Limited Dependent Variables & Selection: PS #2

Francis DiTraglia

HT 2021

This problem set is due on Monday of HT Week 7 at noon. You do not have to submit
solutions to questions 3—4; they will be discussed in the class but will not be marked.

1. Let (y1,21), -, (yn,zn) be a collection of iid observations where y; € {0,1} and
x; is continuously distributed. Suppose that p(x;) = Prob(y; = 1|z;) = F(a + Bx;)
where F(z) = e*/(1 + ¢*) and («, 5) are unknown parameters.

(a) Derive an expression for the partial effect of x; on p(z;) in this model.

Solution: We have

d

L ) = L F(a-+ o) = Fla+ 5B

so all that remains is to calculate F’. By the quotient rule,

Fi(2) = d [ e _ (14 e*) — e*e? _ e
dz \ 1+ ¢e? (1 + e%)? (1 + e2)?

Therefore,

d ) — exp(a + )
da:p( ) { [1+ exp(a + 5:1:)]2 } b

(b) Write out the log-likelihood function ¢y (e, 3) for this model, simplifying your
result as far as possible.

Solution: The likelihood of a single observation is given by
Li(a, B) = f(yilwi, o, B) = F(a+ Ba)¥ [1 — F(a + Ba;)] ¥

and the corresponding log-likelihood is

li(a, B) = log Li(ev, B) = yilog [F(a + B:)] + (1 — y;) log [L — F(a + fz;)] .




Substituting the definition of F' and simplifying, we obtain
exp(a + fz;) exp(a + fBx;)
(a, B) = y:log l—i-exp(oc—i-ﬁxi)} (1 —y)log [ 1 + exp(a + fx;)
= yi(a + ;) — yilog [1 + exp(a + ;)] + (1 — y;) log(1)
— (1 - i) log 1+ expla + f;)
= yi(a + Bx;) — log [1 + exp(a + Su;)]

Because our observations are iid, the log-likelihood function equals the sum
of the likelihoods of each observation. Hence,

_ Z {yi(a + Bx;) — log [1 + exp(a + Bz;)]}

(c¢) Using your answer to the preceding part, derive the first-order conditions for
the maximum likelihood estimators of o and (. Simplify your results as far as
possible.

Solution: Differentiating,

O _ Z iéi(a, )= Z 62 {yi(a + pz;) —log [1 + exp(a + fz;)]}

1 =1

_ Z i exp(a + Bx;) } Z Fla+ f17)

1+ exp(a + Bx;) —

and similarly

N

O S B0 =3 2t ) o+l 5]

—Z[ - Oﬁﬂ%)xz}—i[yi—F(aJrﬁxi)]xz

1+ exp(a+ Bz;) —

Therefore, the first-order conditions are

> i — @+ B Lﬂ — m .

2. This question concerns the Probit regression model P(y = 1|x) = &(x’3) where  is
the standard normal CDF.

(a) Derive the first order conditions for the maximum likelihood estimator [Ai' based
on an iid sample (y1,X), ..., (yn,Xn)-
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Solution: The Probit likelihood for a single observation is given by
Li(B) = ®(xiB)" [1 - e(x;B)]" "
and hence the corresponding log-likelihood is
ti(B) = log Li(B) = yilog ®(x;8) + (1 — yi) log [1 — ®(x;3)]

while the score vector is

B o(x;8)x; BB e — BB (1 — v
_<1>(x;ﬁ)[1—<1>(xgﬁ)]{[1 d(xiB)]yi — 2(x;B) (1 — vi)}

S; =

_ oiB)x s — 2(x4B)]
2(xP)[1 - 2(xB)]

Because ® lacks a closed-form, this expression cannot be simplified further.

The first-order conditions are simply Zf\il s; = 0.

(b) Suppose that y = 1{x'3+ u > 0} where u ~ N(0,1) independently of x and
1(-) is the indicator function. Show that this model is in fact ezactly equivalent
to the Probit regression model.

Solution: First note that
Py =1x) =P(x;8 +u > 0) = P(—u < x'B3).

Now, since u is independent of x, so is —u. Moreover, by the symmetry of
the normal distribution —u ~ N(0,1). Therefore P(—u < x'8) = ®(x'3).

Question #3 will not be marked; you do not have to submit a solution.

3. Consider a logit-Family model with P,; = exp(V},;)/ Z}]=1 exp(V,,;) and V,; = x,.0.

nj

(a) What variety of Logit-family model is this? How can you tell?

Solution: Because all of the attributes vary across alternatives, this is a
conditional logit model.

(b) Show that the partial effects for this model are given by

8Xm

Pni .
= P(1 - P,)B, and 0 = —P,PuB fori#k

8xnk
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Solution: By the quotient rule,

OPy 0 exp (Vo)
axnk axnk Z;]: 1 €xp ( Vn] )

|2 exp(Vay)| 52 exp(Va) = exp(Vaa) |71 52 exp(V)]

) (T2 exp(Viy)]

Now, because V,,; only contains j-specific attributes 0 exp(V,,;)/0x,, = 0 for
any k # j. Hence, the preceding simplifies to

OP,; [Zj:l exp(V,, )} fank exp(Vii) — eXp(Vm)% exp(Viur)

O [ (V)]

S exp(Vi)] g (Vi) expl(Va) s exp(Vi)
- 2

[ exp(Vi)] S (Vi)

8x8nk exp (Vi) Py [ﬁ eXP(Vnk)}

Z;‘]:1 exp(Vy;) Z;']:I exp(Va;)

=P, — PP
ni <axnk) nid nk (8xnk)

Now, suppose that i # k. Then 0V,,;/0x,1 = 0, so we obtain

8xnk

OV
axnk

If instead ¢ = k, we obtain
OP,; OVpi OVipi
8Xm N Pni (8Xn2> B Pnanz (8xm)

= P(1— Py,) (avm-)

axm

Question #4 will not be marked; you do not have to submit a solution.

4. This question is adapted from Wooldridge (2010). Consider the Heckman selection
model from the lecture slides. Assumption (d) of this model states that the con-
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ditional mean of u; given v, is linear: E(ui|vs) = y1v9. In this question, you will
explore the consequences of replacing Assumption (d) with a quadratic conditional
mean function, in particular

Assumption (d*) E(uj|vs) = y1v2 + 72(v3 — 1).

In your answers to the following parts, assume that all assumptions other than (d)

of the Heckman Selection model continue to apply.

(a) Show that Assumption (¢) and (d*) imply E(u;) = 0. Using your answer,
explain why the RHS of Assumption (d*) does not take the form y,vy + Yov3.

Solution: By the Law of Tterated Expectations and Assumption (d*)
E(u1) = E[E(u|v9)] = Elmvs +72(v5 — 1)] = nE(v2) + 12[E(v3) — 1].
Since z ~ N(0,1) by Assumption (c), it follows that
E(ui) =711 x0+7% x(1-1)=0.

If instead Assumption (d*) had taken the form vy + Y2v3, i.e. without
subtracting one from the second term, we would have obtained E(u;) = s,
violating the part of Assumption (b) that imposes E(u;) = 0.

(b) Let a be a constant, z ~ N(0,1) and A(-) be the inverse Mills ratio defined in
the lecture slides. It can be shown that:

Var(z|z > —a) =1 — A(a) [Ma) + a].
Use this result to prove that
E(yi|x, 52 = 1) = x108; + MAX 2) — 1A (x'62)x' 8.

Hint: E(v3vy > —a) = Var(vy|ve > —a) + [E(va|ve > —a)]>.

Solution: The argument is very similar to that given in the lecture slides,
with a few minor modifications. We’ll begin by adapting the logic of Lemma
1 from the slides. Since step 1 of the lemma only used Assumption (b), it
remains true that u; and x are conditionally independent given v,. Note
that only the final part of step 2 uses Assumption (d). Thus everything
before this point continues to apply, in particular

E(y1|x, v2) = x18; + E(u1v2).
Now, substituting (d*) for E(u;|vy), we obtain

E(y|x,v2) = X/151 + 712 + 72(”3 —1).
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The only change in step 3 is that we now have a different expression from
step 2, namely the preceding equality. Substituting this, we obtain

E(yi]x,y2) = Fos(x,y2) E(y|x,v0)] = E [Xll/Bl + 7ve + ’Yz(vg - 1)| X, yz}
= x18; + nE[va|x, y2] + 1. E [(Ug - 1)|x, 92}

and evaluating this expression at y, = 1, we see that

E(yi|x,y2 = 1) = x18; + 1E[va|x, o = 1] + 1E [(v — 1)|x, 92 = 1]
=x10, + nE[wa|x, 50 = 1] + 72 {E(Ug‘xa Y2 =1) — 1}
= X108 + nA(X'02) + 72 {]E(U%’X7 Yo =1) — 1}

since E(vg|x,y2 = 1) = A(x'd2) as we showed in Lemma 2 from the lecture
slides. All that remains is to calculate E(v3|x,y, = 1). By the argument
from step 1 of Lemma 2 with v2 in place of v, we see that the distribution
of v3 given (x,ys = 1) is the same as that of v3 conditional on v5 > ¢, where
we define ¢ = —x'd5 as in the slides. Thus it suffices for us to derive an
expression for E(v3|vy > ¢) where vy ~ N(0,1). Now, recall the hint from
the problem statement:

E(v2|vy > —a) = Var(va|vs > —a) + [E(ve|va > —a))”.

In the lecture slides we showed that E(ve|vy > —a) = A(a), and from the
result in the problem statement we have Var(vg|vg > —a) = 1—\(a)[A(a)+d]
where A(a) = p(a)/®P(a) is the inverse Mills ratio. Substituting into the
preceding equality and simplifying,

E(vi|vy > —a) =1 — Xa) [\(a) + a] +
=1—Xa)?* - a\(a) + Ma)?
=1—a\(a)

and taking a = —c¢ = x5, it follows that
E(v3]x,yo = 1) = E(va|vy > —a) =1 —aX(a) = 1 — (x'8,) - A(x'85).

Finally, substituting this into our expression for E(y; |x,y2 = 1) from above,

E(y|x, 92 = 1) = X168, + 1 A(X'2) + 12 {E(U§|X7 Yo =1) — 1}
= x18; + NA(X02) + 72 {1 — (x'93) - A(x'82) — 1}
= X181 + 1 A(X'02) — A (X'02)%' 5.

(c) Using the expression for E(y;|x,y2 = 1) from the preceding part, explain how
to carry out the Heckman Two-step procedure under assumption (d*).
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Solution: The first step is the same as in the lecture slides: run Probit on
the full sample to estimate (52 and then construct )\ = A\(X] (52) In the second
step, we run an OLS regression y;; on X;1, )\ and )\ X;02 using the selected
sample, i.e. the individuals with y9; = 1. Compared to the procedure from
class, this modified second step includes an extra regressor, namely /):ixg(sg.

(d) Consider a “naive” OLS regression of y; on x; for the subset of individuals with
yo = 1. Without actually running the naive regression, explain how you could
use the estimates from your Heckman Two-step procedure in the preceding part
to determine whether or not the naive OLS of 3; would be biased.

Solution: The parameters v; and 5 govern selection bias. If these are both
zero, then the naive regression does not suffer from selection bias. Thus, you
could examine the estimates 7; and 7, of these estimates, and perhaps test
the joint restriction that v, = 75 = 0, to determine whether sample selection
bias is present in a particular application.
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