
Limited Dependent Variables & Selection: PS #2

Francis DiTraglia

HT 2021

This problem set is due on Monday of HT Week 7 at noon. You do not have to submit
solutions to questions 3–4; they will be discussed in the class but will not be marked.

1. Let (y1, x1), · · · , (yN , xN) be a collection of iid observations where yi ∈ {0, 1} and
xi is continuously distributed. Suppose that p(xi) ≡ Prob(yi = 1|xi) = F (α + βxi)

where F (z) = ez/(1 + ez) and (α, β) are unknown parameters.

(a) Derive an expression for the partial effect of xi on p(xi) in this model.

Solution: We have

d

dx
p(x) =

∂

∂x
F (α + βx) = F ′(α + βx)β

so all that remains is to calculate F ′. By the quotient rule,

F ′(z) =
d

dz

(
ez

1 + ez

)
=

ez(1 + ez)− ezez

(1 + ez)2
=

ez

(1 + ez)2

Therefore,
d

dx
p(x) =

{
exp(α + βx)

[1 + exp(α + βx)]2

}
β

(b) Write out the log-likelihood function `N(α, β) for this model, simplifying your
result as far as possible.

Solution: The likelihood of a single observation is given by

Li(α, β) = f(yi|xi, α, β) = F (α + βxi)
yi [1− F (α + βxi)]

1−yi

and the corresponding log-likelihood is

`i(α, β) = logLi(α, β) = yi log [F (α + βxi)] + (1− yi) log [1− F (α + βxi)] .
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Substituting the definition of F and simplifying, we obtain

`i(α, β) = yi log

[
exp(α + βxi)

1 + exp(α + βxi)

]
+ (1− yi) log

[
1− exp(α + βxi)

1 + exp(α + βxi)

]
= yi(α + βxi)− yi log [1 + exp(α + βxi)] + (1− yi) log(1)

− (1− yi) log [1 + exp(α + βxi)]

= yi(α + βxi)− log [1 + exp(α + βxi)]

Because our observations are iid, the log-likelihood function equals the sum
of the likelihoods of each observation. Hence,

`N(α, β) =
N∑
i=1

{yi(α + βxi)− log [1 + exp(α + βxi)]}

(c) Using your answer to the preceding part, derive the first-order conditions for
the maximum likelihood estimators of α and β. Simplify your results as far as
possible.

Solution: Differentiating,

∂`N
∂α

=
N∑
i=1

∂

∂α
`i(α, β) =

N∑
i=1

∂

∂α
{yi(α + βxi)− log [1 + exp(α + βxi)]}

=
N∑
i=1

[
yi −

exp(α + βxi)

1 + exp(α + βxi)

]
=

N∑
i=1

[yi − F (α + βxi)]

and similarly

∂`N
∂β

=
N∑
i=1

∂

∂β
`i(α, β) =

N∑
i=1

∂

∂β
{yi(α + βxi)− log [1 + exp(α + βxi)]}

=
N∑
i=1

[
yixi −

exp(α + βxi)xi

1 + exp(α + βxi)

]
=

N∑
i=1

[yi − F (α + βxi)]xi

Therefore, the first-order conditions are

N∑
i=1

[
yi − F (α̂ + β̂xi)

] [ 1
xi

]
=

[
0

0

]
.

2. This question concerns the Probit regression model P(y = 1|x) = Φ(x′β) where Φ is
the standard normal CDF.

(a) Derive the first order conditions for the maximum likelihood estimator β̂ based
on an iid sample (y1,x), . . . , (yN ,xN).

Page 2



Solution: The Probit likelihood for a single observation is given by

Li(β) = Φ(x′
iβ)

yi [1− Φ(x′
iβ)]

1−yi

and hence the corresponding log-likelihood is

`i(β) ≡ logLi(β) = yi log Φ(x
′
iβ) + (1− yi) log [1− Φ(x′

iβ)]

while the score vector is

si ≡
∂

∂β
`i(β) = yi

[
ϕ(x′

iβ)

Φ(x′
iβ)

]
xi − (1− yi)

[
ϕ(x′

iβ)

1− Φ(x′
iβ)

]
xi

=
ϕ(x′

iβ)xi

Φ(x′
iβ) [1− Φ(x′

iβ)]
{[1− Φ(x′

iβ)] yi − Φ(x′
iβ)(1− yi)}

=
ϕ(x′

iβ)xi [yi − Φ(x′
iβ)]

Φ(x′
iβ) [1− Φ(x′

iβ)]

Because Φ lacks a closed-form, this expression cannot be simplified further.
The first-order conditions are simply

∑N
i=1 si = 0.

(b) Suppose that y = 1 {x′β + u > 0} where u ∼ N (0, 1) independently of x and
1(·) is the indicator function. Show that this model is in fact exactly equivalent
to the Probit regression model.

Solution: First note that

P(y = 1|x) = P(x′
iβ + u > 0) = P(−u < x′β).

Now, since u is independent of x, so is −u. Moreover, by the symmetry of
the normal distribution −u ∼ N (0, 1). Therefore P(−u < x′β) = Φ(x′β).

Question #3 will not be marked; you do not have to submit a solution.

3. Consider a logit-Family model with Pni = exp(Vni)/
∑J

j=1 exp(Vnj) and Vnj = x′
njβ.

(a) What variety of Logit-family model is this? How can you tell?

Solution: Because all of the attributes vary across alternatives, this is a
conditional logit model.

(b) Show that the partial effects for this model are given by

∂Pni

∂xni

= Pni(1− Pni)β, and ∂Pni

∂xnk

= −PniPnkβ for i 6= k
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Solution: By the quotient rule,

∂Pni

∂xnk

=
∂

∂xnk

[
exp(Vni)∑J
j=1 exp(Vnj)

]

=

[∑J
j=1 exp(Vnj)

]
∂

∂xnk
exp(Vni)− exp(Vni)

[∑J
j=1

∂
∂xnk

exp(Vnj)
]

[∑J
j=1 exp(Vnj)

]2
Now, because Vnj only contains j-specific attributes ∂ exp(Vnj)/∂xnk = 0 for
any k 6= j. Hence, the preceding simplifies to

∂Pni

∂xnk

=

[∑J
j=1 exp(Vnj)

]
∂

∂xnk
exp(Vni)− exp(Vni)

∂
∂xnk

exp(Vnk)[∑J
j=1 exp(Vnj)

]2

=

[∑J
j=1 exp(Vnj)

]
∂

∂xnk
exp(Vni)[∑J

j=1 exp(Vnj)
]2 −

exp(Vni)
∂

∂xnk
exp(Vnk)[∑J

j=1 exp(Vnj)
]2

=
∂

∂xnk
exp(Vni)∑J

j=1 exp(Vnj)
−

Pni

[
∂

∂xnk
exp(Vnk)

]
∑J

j=1 exp(Vnj)

= Pni

(
∂Vni

∂xnk

)
− PniPnk

(
∂Vnk

∂xnk

)
Now, suppose that i 6= k. Then ∂Vni/∂xnk = 0, so we obtain

∂Pni

∂xnk

= −PniPnk

(
∂Vnk

∂xnk

)
= −PniPnkβ, i 6= k.

If instead i = k, we obtain

∂Pni

∂xni

= Pni

(
∂Vni

∂xni

)
− PniPni

(
∂Vni

∂xni

)
= Pni(1− Pni)

(
∂Vni

∂xni

)
= Pni(1− Pni)β

Question #4 will not be marked; you do not have to submit a solution.

4. This question is adapted from Wooldridge (2010). Consider the Heckman selection
model from the lecture slides. Assumption (d) of this model states that the con-
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ditional mean of u1 given v2 is linear: E(u1|v2) = γ1v2. In this question, you will
explore the consequences of replacing Assumption (d) with a quadratic conditional
mean function, in particular

Assumption (d*) E(u1|v2) = γ1v2 + γ2(v
2
2 − 1).

In your answers to the following parts, assume that all assumptions other than (d)
of the Heckman Selection model continue to apply.

(a) Show that Assumption (c) and (d*) imply E(u1) = 0. Using your answer,
explain why the RHS of Assumption (d*) does not take the form γ1v2 + γ2v

2
2.

Solution: By the Law of Iterated Expectations and Assumption (d*)

E(u1) = E[E(u1|v2)] = E[γ1v2 + γ2(v
2
2 − 1)] = γ1E(v2) + γ2[E(v

2
2)− 1].

Since z ∼ N (0, 1) by Assumption (c), it follows that

E(u1) = γ1 × 0 + γ2 × (1− 1) = 0.

If instead Assumption (d*) had taken the form γ1v2 + γ2v
2
2, i.e. without

subtracting one from the second term, we would have obtained E(u1) = γ2,
violating the part of Assumption (b) that imposes E(u1) = 0.

(b) Let a be a constant, z ∼ N(0, 1) and λ(·) be the inverse Mills ratio defined in
the lecture slides. It can be shown that:

Var(z|z > −a) = 1− λ(a) [λ(a) + a] .

Use this result to prove that

E(y1|x, y2 = 1) = x′
1β1 + γ1λ(x

′δ2)− γ2λ(x
′δ2)x

′δ2.

Hint: E(v22|v2 > −a) = Var(v2|v2 > −a) + [E(v2|v2 > −a)]2.

Solution: The argument is very similar to that given in the lecture slides,
with a few minor modifications. We’ll begin by adapting the logic of Lemma
1 from the slides. Since step 1 of the lemma only used Assumption (b), it
remains true that u1 and x are conditionally independent given v2. Note
that only the final part of step 2 uses Assumption (d). Thus everything
before this point continues to apply, in particular

E(y1|x, v2) = x′
1β1 +E(u1|v2).

Now, substituting (d*) for E(u1|v2), we obtain

E(y1|x, v2) = x′
1β1 + γ1v2 + γ2(v

2
2 − 1).
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The only change in step 3 is that we now have a different expression from
step 2, namely the preceding equality. Substituting this, we obtain

E(y1|x, y2) = Ev2|(x,y2) [E(y1|x, v2)] = E
[
x′
1β1 + γ1v2 + γ2(v

2
2 − 1)

∣∣x, y2]
= x′

1β1 + γ1E[v2|x, y2] + γ2E
[
(v22 − 1)|x, y2

]
and evaluating this expression at y2 = 1, we see that

E(y1|x, y2 = 1) = x′
1β1 + γ1E[v2|x, y2 = 1] + γ2E

[
(v22 − 1)|x, y2 = 1

]
= x′

1β1 + γ1E[v2|x, y2 = 1] + γ2
{
E(v22|x, y2 = 1)− 1

}
= x′

1β1 + γ1λ(x
′δ2) + γ2

{
E(v22|x, y2 = 1)− 1

}
since E(v2|x, y2 = 1) = λ(x′δ2) as we showed in Lemma 2 from the lecture
slides. All that remains is to calculate E(v22|x, y2 = 1). By the argument
from step 1 of Lemma 2 with v22 in place of v2, we see that the distribution
of v22 given (x, y2 = 1) is the same as that of v22 conditional on v22 > c, where
we define c ≡ −x′δ2 as in the slides. Thus it suffices for us to derive an
expression for E(v22|v2 > c) where v2 ∼ N(0, 1). Now, recall the hint from
the problem statement:

E(v22|v2 > −a) = Var(v2|v2 > −a) + [E(v2|v2 > −a)]2 .

In the lecture slides we showed that E(v2|v2 > −a) = λ(a), and from the
result in the problem statement we have Var(v2|v2 > −a) = 1−λ(a)[λ(a)+a]

where λ(a) ≡ ϕ(a)/Φ(a) is the inverse Mills ratio. Substituting into the
preceding equality and simplifying,

E(v22|v2 > −a) = 1− λ(a) [λ(a) + a] + [λ(a)]2

= 1− λ(a)2 − aλ(a) + λ(a)2

= 1− aλ(a)

and taking a = −c = x′δ2, it follows that

E(v22|x, y2 = 1) = E(v22|v2 > −a) = 1− aλ(a) = 1− (x′δ2) · λ(x′δ2).

Finally, substituting this into our expression for E(y1|x, y2 = 1) from above,

E(y1|x, y2 = 1) = x′
1β1 + γ1λ(x

′δ2) + γ2
{
E(v22|x, y2 = 1)− 1

}
= x′

1β1 + γ1λ(x
′δ2) + γ2 {1− (x′δ2) · λ(x′δ2)− 1}

= x′
1β1 + γ1λ(x

′δ2)− γ2λ(x
′δ2)x

′δ2.

(c) Using the expression for E(y1|x, y2 = 1) from the preceding part, explain how
to carry out the Heckman Two-step procedure under assumption (d*).
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Solution: The first step is the same as in the lecture slides: run Probit on
the full sample to estimate δ̂2 and then construct λ̂i ≡ λ(x′

iδ̂2). In the second
step, we run an OLS regression yi1 on xi1, λ̂i and λ̂ix

′
iδ2 using the selected

sample, i.e. the individuals with y2i = 1. Compared to the procedure from
class, this modified second step includes an extra regressor, namely λ̂ix

′
iδ2.

(d) Consider a “naïve” OLS regression of y1 on x1 for the subset of individuals with
y2 = 1. Without actually running the naïve regression, explain how you could
use the estimates from your Heckman Two-step procedure in the preceding part
to determine whether or not the naïve OLS of β1 would be biased.

Solution: The parameters γ1 and γ2 govern selection bias. If these are both
zero, then the naïve regression does not suffer from selection bias. Thus, you
could examine the estimates γ̂1 and γ̂2 of these estimates, and perhaps test
the joint restriction that γ1 = γ2 = 0, to determine whether sample selection
bias is present in a particular application.
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