Limited Dependent Variables & Selection: PS #1

Francis DiTraglia

HT 2021

This problem set is due on *Monday of HT Week 6 at noon*. You do not have to submit solution to questions 1-2; they will be discussed in class but will not be marked.

Question #1 will not be marked; you do not have to submit a solution.

- 1. Let $y \sim \text{Poisson}(\theta)$.
 - (a) Using steps similar to the derivation of $\mathbb{E}[y]$ from the lecture slides, show that $\mathbb{E}[y(y-1)] = \theta^2$.
 - (b) Use your answer to the preceding part, along with the result $\mathbb{E}[y] = \theta$, to show that $\operatorname{Var}(y) = \theta$.

Question # 2 will not be marked; you do not have to submit a solution.

- 2. Suppose that we observe count data $y_1, \ldots, y_N \sim \text{iid } p_o$ and our model $f(y_i|\theta)$ is a Poisson(θ) probability mass function. Show that $\widehat{K} = s_y^2/(\overline{y})^2$ where we define $s_y^2 = \frac{1}{N} \sum_{i=1}^N (y_i - \overline{y})^2$ and $\overline{y} = \frac{1}{N} \sum_{i=1}^N y_i$.
- 3. Let $\widehat{\boldsymbol{\beta}}$ be the conditional maximum likelihood estimator of $\boldsymbol{\beta}_o$ in a Poisson regression model with conditional mean function $\mathbb{E}(y_i|\mathbf{x}_i) = \exp(\mathbf{x}'_i \boldsymbol{\beta}_o)$, based on a sample of iid observations $(y_1, \mathbf{x}_1), \ldots, (y_N, \mathbf{x}_N)$.
 - (a) Derive the first-order conditions for β .
 - (b) Using your answer to the previous part show that, so long as \mathbf{x}_i includes a constant, the residuals $\hat{u}_i \equiv y_i \exp(\mathbf{x}'_i \hat{\boldsymbol{\beta}})$ sum to zero, as in OLS regression.
 - (c) Using your answer to the preceding part, show that $\left[\frac{1}{N}\sum_{i=1}^{N}\exp(\mathbf{x}_{i}^{\prime}\widehat{\boldsymbol{\beta}})\right] = \bar{y}$, where \bar{y} is the sample mean of y, so that $\bar{y}\widehat{\beta}_{j}$ equals the estimated average partial effect of x_{j} in this model.
 - (d) Explain why multiplying the estimated coefficients from this model by \bar{y} makes them roughly comparable to the corresponding OLS estimates from the model $y_i = \mathbf{x}'_i \boldsymbol{\theta} + \varepsilon_i$.

4. Suppose that we observe N iid draws (y_i, \mathbf{x}_i) from a population of interest where $y_i \in \{0, 1\}$ and \mathbf{x}_i is a $(k \times 1)$ vector of dummy variables indicating which of k mutually exclusive "bins" person *i* falls into. For example, suppose that k = 2 and we defined the bins to be "female" and "male." Then $\mathbf{x}'_i = \begin{bmatrix} 1 & 0 \end{bmatrix}$ would indicate that person *i* is female while $\mathbf{x}'_1 = \begin{bmatrix} 0 & 1 \end{bmatrix}$ would indicate that person *i* is male. Note that \mathbf{x}_i does not include an intercept to avoid the dummy variable trap. The following parts explore the results of fitting the linear probability model $\mathbb{P}(y_i|\mathbf{x}_i) = \mathbf{x}'_i \boldsymbol{\beta}$ by running an OLS regression of y_i on \mathbf{x}_i . Following the usual conventions, define

$$\mathbf{X}' = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_N \end{bmatrix}, \quad \mathbf{y}' = \begin{bmatrix} y_1 & y_2 & \cdots & y_N \end{bmatrix}$$

(a) Let N_j denote the number of individuals in the sample who fall into category j. In other words, if $x_i^{(j)}$ is the *j*th element of \mathbf{x}_i , then $N_j \equiv \sum_{i=1}^N x_i^{(j)}$. Show that

$$\mathbf{X}'\mathbf{X} = \begin{bmatrix} N_1 & & 0 \\ & N_2 & & \\ & & \ddots & \\ 0 & & & N_k \end{bmatrix}$$

i.e. that $\mathbf{X}'\mathbf{X}$ is a $(k \times k)$ diagonal matrix with *j*th diagonal element N_j .

- (b) Substitute the preceding part into $\hat{\boldsymbol{\beta}} \equiv (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ to obtain a simple, closed-form expression for $\hat{\beta}_j$. Interpret your result.
- (c) A critique of the LPM is that it can yield predicted probabilities that are greater than one or less than zero. Is this a problem in the present example?