
Limited Dependent Variables & Selection: PS #1

Francis DiTraglia

HT 2021

This problem set is due on Monday of HT Week 6 at noon. You do not have to submit
solution to questions 1–2; they will be discussed in class but will not be marked.

Question #1 will not be marked; you do not have to submit a solution.

1. Let y ∼ Poisson(θ).

(a) Using steps similar to the derivation of E[y] from the lecture slides, show that
E[y(y − 1)] = θ2.

Solution:

E [y(y − 1)] =
∞∑
y=0

y(y − 1)

(
e−θθy

y!

)
=

∞∑
y=2

y(y − 1)

(
e−θθy

y!

)

= θ2
∞∑
y=2

e−θθy−2

(y − 2)!
= θ2

∞∑
y=0

e−θθy

y!
= θ2

The first equality is the definition of E[y(y−1)] for a Poisson RV. The second
uses the fact that y(y − 1) = 0 for y = 0 and y = 1 so the first two terms
of the infinite sum are zero. The third factors θ2 out of the infinite sum (we
can always do this provided that the sum converges) and cancels y(y − 1)

from y! in the denominator. The fourth shifts the index of summation, and
the final recognizes that the infinite sum is now a Poisson pmf summed over
all possible values of y and hence equals one.

(b) Use your answer to the preceding part, along with the result E[y] = θ, to show
that Var(y) = θ.

Solution: Recall that Var(y) = E(y2)−E(y)2. Hence,

E [y(y − 1)] = E(y2)−E(y)
= E(y2)−E(y)2 +

[
E(y)2 −E(y)

]
= Var(y) +

[
E(y)2 −E(y)

]
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and solving for Var(y),

Var(y) = E [y(y − 1)] +E(y)−E(y)2.

From the preceding part we know that E [y(y − 1)] = θ and from the lecture
slides we know that E(y) = θ. Therefore, Var(y) = θ2 + θ − θ2 = θ2.

Question # 2 will not be marked; you do not have to submit a solution.

2. Suppose that we observe count data y1, . . . , yN ∼ iid po and our model f(yi|θ) is
a Poisson(θ) probability mass function. Show that K̂ = s2y/(ȳ)

2 where we define
s2y =

1
N

∑N
i=1(yi − ȳ)2 and ȳ = 1

N

∑N
i=1 yi.

Solution: Because θ is a scalar, by definition

K̂ ≡ 1

N

N∑
i=1

[
d

dθ
log f(yi|θ̂)

]2
Here log f(yi|θ) = yi log(θ) − θ − log(yi!) and, as derived in the lecture slides,
θ̂ = ȳ. Differentiating with respect to θ and substituting into the expression for
K̂ given above, we have

K̂ =
1

N

N∑
i=1

[yi/ȳ − 1]2 =
1

N

N∑
i=1

[
y2i /(ȳ)

2 − 2yi/ȳ + 1
]

=
1

(ȳ)2

[
1

N

N∑
i=1

y2i

]
− 2

ȳ

[
1

N

N∑
i=1

yi

]
+

[
1

N

N∑
i=1

1

]

=
1

(ȳ)2

[
1

N

N∑
i=1

y2i

]
− 2

ȳ
· ȳ + 1 =

1

(ȳ)2

[
1

N

N∑
i=1

y2i

]
− 1

=
1

(ȳ)2

{[
1

N

N∑
i=1

y2i

]
− (ȳ)2

}
.

It remains to show that the term in the curly braces equals s2y. Expanding,

s2y ≡
1

N

N∑
i=1

(yi − ȳ)2 =
1

N

N∑
i=1

(
y2i − 2yiȳ + ȳ2

)
=

[
1

N

N∑
i=1

y2i

]
− 2ȳ

[
1

N

N∑
i=1

yi

]
+ ȳ2

[
1

N

N∑
i=1

1

]

=

[
1

N

N∑
i=1

y2i

]
− 2(ȳ)2 + (ȳ)2

=

[
1

N

N∑
i=1

y2i

]
− (ȳ)2.
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3. Let β̂ be the conditional maximum likelihood estimator of βo in a Poisson regression
model with conditional mean function E(yi|xi) = exp(x′

iβo), based on a sample of
iid observations (y1,x1), . . . , (yN ,xN).

(a) Derive the first-order conditions for β̂.

Solution: The log-likelihood of the ith observation is given by

`i(β) ≡ log f(yi|xi,β) = yi log [exp {x′
iβ}]− exp(xiβ)− log (yi!)

= yix
′
iβ − exp(x′

iβ)− log (yi!)

and hence the score vector is

si(β) ≡
∂`i(β)

∂β
= yixi − exp (x′

iβ)xi = xi [yi − exp (x′
iβ)] .

Therefore, β̂ solves the first order condition

1

N

N∑
i=1

xi [yi − exp (x′
iβ)] .

In other words,

1

N

N∑
i=1

xi

[
yi − exp

(
x′
iβ̂
)]

=
1

N

N∑
i=1

xiûi = 0.

Notice that we are free to include or exclude the 1/N factor since multiplying
both sides by N gives

N∑
i=1

xi

[
yi − exp

(
x′
iβ̂
)]

=
N∑
i=1

xiûi = 0.

(b) Using your answer to the previous part show that, so long as xi includes a
constant, the residuals ûi ≡ yi − exp(x′

iβ̂) sum to zero, as in OLS regression.

Solution: The first order conditions derived in the preceding part are a col-
lection of equations: one for each regressor xj. If x contains a constant, then
one of the xj is simply equal to one. Substituting, the first-order condition
for this regressor is

1

N

N∑
i=1

1 ·
[
yi − exp

(
x′
iβ̂
)]

=
1

N

N∑
i=1

ûi = 0.

Multiplying through by N gives
∑N

i=1 ûi = 0.
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(c) Using your answer to the preceding part, show that
[

1
N

∑N
i=1 exp(x

′
iβ̂)

]
= ȳ,

where ȳ is the sample mean of y, so that ȳβ̂j equals the estimated average
partial effect of xj in this model.

Solution: Since ûi ≡ yi − exp(x′
iβ̂), we have exp(x′

iβ̂) = yi − ûi. Hence,

1

N

N∑
i=1

exp
(
x′
iβ̂
)
=

1

N

N∑
i=1

(yi − ûi) =
1

N

N∑
i=1

yi −
1

N

N∑
i=1

ûi = ȳ − 0 = ȳ.

(d) Explain why multiplying the estimated coefficients from this model by ȳ makes
them roughly comparable to the corresponding OLS estimates from the model
yi = x′

iθ + εi.

Solution: The result of the preceding part implies that the estimated aver-
age partial effect of xj in a Poisson regression model equals ȳβ̂j. In a linear
regression model, the partial effects do not vary with x. Hence the estimated
average partial effect of xj is simply θ̂j. In other words: the estimated co-
efficients in a linear regression are APEs, while the estimated coefficients in
a Poisson regression must be rescaled by ȳ to convert them to APEs. Af-
ter carrying out this conversion we are comparing apples-to-apples, albeit
from different models. Accordingly we should expect θ̂j and ȳβ̂j to be more
comparable in magnitude that θ̂j and β̂j.

4. Suppose that we observe N iid draws (yi,xi) from a population of interest where
yi ∈ {0, 1} and xi is a (k × 1) vector of dummy variables indicating which of k

mutually exclusive “bins” person i falls into. For example, suppose that k = 2 and
we defined the bins to be “female” and “male.” Then x′

i =
[
1 0

]
would indicate that

person i is female while x′
1 =

[
0 1

]
would indicate that person i is male. Note that

xi does not include an intercept to avoid the dummy variable trap. The following
parts explore the results of fitting the linear probability model P(yi|xi) = x′

iβ by
running an OLS regression of yi on xi. Following the usual conventions, define

X′ =
[
x1 x2 · · · xN

]
, y′ =

[
y1 y2 · · · yN

]
(a) Let Nj denote the number of individuals in the sample who fall into category j.

In other words, if x(j)
i is the jth element of xi, then Nj ≡

∑N
i=1 x

(j)
i . Show that

X′X =


N1 0

N2

. . .
0 Nk


i.e. that X′X is a (k × k) diagonal matrix with jth diagonal element Nj.

Page 4



Solution: Expressed in summation form,

X′X =
[
x1 · · · xN

] x1

...
xN

 =
N∑
i=1

xix
′
i

Consider an arbitrary element xix
′
i of the sum. Because the k dummy vari-

ables in xi encode membership in k mutually exclusive categories, x(j)
i x

(`)
i = 0

for any j 6= `. In other words, all of the off-diagonal elements of xix
′
i are zero.

Moreover, because each element of xi is zero or one, the diagonal elements
x
(j)
i x

(j)
i simply equal x(j)

i . Therefore, xixi = diag {xi} and we obtain

X′X =
N∑
i=1

diag {xi} = diag(N1, . . . , Nk).

(b) Substitute the preceding part into β̂ ≡ (X′X)−1X′y to obtain a simple, closed-
form expression for β̂j. Interpret your result.

Solution: We have defined the (k × 1) vector x′
i to be the ith row of X.

Now let x(j) be the jth column of X, i.e. the (N × 1) vector that stacks all
N observations of x(j)

i . Then we have

X =
[
x(1) · · · x(k)

]
and hence,

β̂ = (X′X)−1X′y =


1/N1 0

1/N2

. . .
0 1/Nk


x

(1)′

...
x(k)′

y =

y
′x(1)/N1

...
y′x(k)/Nk


Thus, we have shown that

β̂j = y′x(j)/Nj =
1

Nj

N∑
i=1

x
(j)
i yi =

#of people in bin j with y = 1

#of people in bin j

Hence β̂j is simply the sample analogue of P(yi = 1|i in bin j).

(c) A critique of the LPM is that it can yield predicted probabilities that are greater
than one or less than zero. Is this a problem in the present example?

Solution: No. In this example our prediction ŷi for a person who falls into
bin j is simply β̂j. We see from the expression in the preceding part that
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this quantity is always between zero and one.
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