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Lecture #1 – Maximum Likelihood Estimation Under Mis-specification

Review: the Poisson Distribution

The Kullback-Leibler Divergence

Example: Consistency of Poisson MLE

Asymptotic Theory for MLE Under Mis-specification

Example: Asymptotic Variance Calculations for Poisson MLE

Appendix: The Information Matrix Equality
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“All models are wrong; some are useful.”

Question
What happens if we carry out maximum likelihood estimation, but our model is wrong?

This Lecture
Examine a simple example in excruciating detail; present the general theory.

Next Lecture
Apply what we’ve learned to study Poisson Regression, a model for count data.
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Suppose that y ∼ Poisson(θ)

Support Set: {0, 1, 2, . . . }
A Poisson Random Variable is a count.

Probability Mass Function

f (y ; θ) = e−θθy

y !

Expected Value: E(y) = θ

Poisson parameter θ equals the mean of y .

Variance: Var(y) = θ

You will show this on the problem set.

∞∑
y=0

e−θθy

y ! = e−θ
∞∑

y=0

θy

y ! = e−θ
(

eθ
)
= 1

E(y) =
∞∑

y=0

y e−θθy

y ! =
∞∑

y=1

y e−θθy

y !

= θ

∞∑
y=1

e−θθy−1

(y − 1)! = θ

∞∑
y=0

e−θθy

y ! = θ
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MLE for θ where y1, y2, . . . , yN ∼ iid Poisson(θ).

The Likelihood (iid data)
LN(θ) ≡

∏N
i=1

e−θθyi
yi !

The Log-Likelihood
`N(θ) =

∑N
i=1 [yi log(θ)− θ − log(yi !)]

Maximum Likelihood Estimator
θ̂ ≡ argmax

θ∈Θ
`N(θ) = ȳ

d
dθ `N(θ) =

N∑
i=1

[yi

θ
− 1
]

d
dθ `N(θ̂) = 0

N∑
i=1

[
yi/θ̂ − 1

]
= 0( N∑

i=1

yi

)
/θ̂ = N

1
N

N∑
i=1

yi = ȳ = θ̂
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The Kullback-Leibler (KL) Divergence

Motivation
How well does a parametric model f (y;θ)
approximate a true density/pmf po(y)?

Definition
KL(po ; fθ) ≡ E

[
log

{
po(y)
f (y;θ)

}]
KL Properties

1. Asymmetric: KL(po ; fθ) 6= KL(fθ; po)

2. KL(po ; fθ) ≥ 0; zero iff po = fθ
3. Min KL iff max expected log-likelihood

Alternative Expression

E

[
log

{
po(y)

f (y;θ)

}]
= E [log po(y)]︸ ︷︷ ︸

Constant wrt θ

−E [log f (y;θ)]︸ ︷︷ ︸
Expected Log-like.

All expectations are wrt po

po(y) and f (y;θ) are merely functions of the RV y

E[log po(y)] =
∫

log po(y)po(y) dy

E[log f (y;θ)] =
∫

log f (y;θ)po(y) dy

Watch Out!
KL = ∞ if ∃y with f (y;θ) = 0 & po(y) 6= 0
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KL(po; f ) ≥ 0 with equality iff po = f

Jensen’s Inequality
If ϕ is convex then ϕ(E[y ]) ≤ E[ϕ(y)], with equality iff ϕ is linear or y is constant.

log is concave so (− log) is convex

E
[
log

{
po(y)
f (y)

}]
= E

[
− log

{
f (y)
po(y)

}]
≥ − log

{
E
[

f (y)
po(y)

]}
= − log

{∫ ∞

−∞

f (y)
po(y)

· po(y) dy
}

= − log

{∫ ∞

−∞
f (y) dy

}
= − log(1) = 0
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A Simple Example: Calculating the KL Divergence
Remember: all expectations are calculated using po .

True Distribution po

y1, . . . , yN ∼ iid po where:
po(0) = 2

5 , po(1) = 1
5 , po(2) = 2

5 .

Mis-specified Model fθ
y1, . . . , yN ∼ iid Poisson(θ)

KL Divergence
KL(po ; fθ) = θ− log θ+(Constant)

KL(po ; fθ) = E[log po(y)]−E[log f (y ; θ)]

E[log po(y)] =
∑
all y

log [po(y)] po(y)

= log

(
2
5

)
·

2
5
+ log

(
1
5

)
·

1
5
+ log

(
2
5

)
·

2
5

E[log f (y ; θ)] =
∑
all y

log

[
e−θθy

y!

]
po(y)

= log
(

e−θ
)
×

2
5
+ log

(
e−θθ

)
×

1
5
+ log

(
e−θθ2

2

)
×

2
5

= −
[
θ − log(θ) + log(2)×

2
5

]
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A Simple Example Continued: Minimizing the KL Divergence
Model = Poisson(θ); True Dist. po(0) = po(2) = 2

5 and po(1) = 1
5

Best Approximation
What parameter value θo makes the Poisson(θ) model as close as possible to the true
distribution po , where we measure “closeness” using the KL-divergence?

Using the previous slide
KL(po ; fθ) = θ − log θ + (Const.)

FOC: 0 = 1 − 1
θ

=⇒ θ = 1

A more direct approach
Min KL ⇐⇒ Max Expected Log-like.

d
dθE[log f (y ; θ)] = d

dθE [−θ + y log(θ)− log(y !)]

=
d
dθ {−θ +E[y ] log(θ)−E[log(y !)]}

= −1 +E[y ]/θ = 0

=⇒ θ = E[y ]
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A Simple Example Continued: Minimizing the KL Divergence
Model = Poisson(θ); True Dist. po(0) = po(2) = 2

5 and po(1) = 1
5

Best Approximation
What parameter value θo makes the Poisson(θ) model as close as possible to the true
distribution po , where we measure “closeness” using the KL-divergence?

First approach: θo = 1 Second approach: θo = E[y ]

Both Methods Agree

I For the specified po we have: E[y ] = 0 · 1
5 + 1 · 2

5 + 2 · 2
5 = 1.

I The “Direct approach” is general: works for any po .
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Is this just a coincidence?

We have shown that:
1. Under an iid Poisson(θ) model for y1, . . . , yN , the MLE for θ is θ̂ = ȳ

2. For any (reasonable) po , setting θo = E[yi ] minimizes KL(po ; fθ).

Law of Large Numbers & Central Limit Theorem:
θ̂ = ȳ is a consistent, asymptotically normal estimator of E[yi ] as N →∞.

So at least in this example…
The maximum likelihood estimator θ̂ is a consistent estimator of θo , the minimizer the
KL divergence from the true distribution po to the Poisson(θ) model f (y ; θ).
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Maximum Likelihood Estimation Under Mis-specification
Note: expectations and variances are calculated using po

Theorem
Suppose that y1, . . . , yN ∼ iid po and let θ̂ denote the MLE for θ under the possibly
mis-specified model f (y;θ). Then, under mild regularity conditions:

(i) θ̂ is consistent for the pseudo-true parameter value θo , defined as the minimizer
of KL(po , fθ) over the parameter space Θ.

(ii)
√

N(θ̂ − θo)→d N (0, J−1KJ−1)

where we define J ≡ −E
[
∂2 log f (y;θo)

∂θ∂θ′

]
and K ≡ Var

[
∂ log f (y;θo)

∂θ

]
.
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Why is this result such a big deal?

1. Provides an interpretation of MLE when we acknowledge that our models are only
an approximation or reality: MLE recovers the pseudo-true parameter θo .

2. Yields a formula for standard errors that is robust to mis-specification of our
model: compare to Heteroskedasticity consistent SEs for regression.

3. If the model is correctly specified, we recover the “classical” MLE result.
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Maximum Likelihood Estimation Under Correct Specification
“Classical” large-sample theory for MLE

Theorem
Suppose that y1, . . . , yN ∼ iid f (y;θo). Then, under mild regularity conditions:

(i) θ̂ is consistent for θo .

(ii)
√

N(θ̂ − θo)→d N (0, J−1) where J ≡ −E
[
∂2 log f (y;θo)

∂θ∂θ′

]
.

Why? If po(y) = f (y;θo), then:

1. KL(po ; fθ) equals zero at θ = θo .

2. The information matrix equality gives K = J which implies J−1KJ−1 = J−1.
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A Consistent Asymptotic Variance Matrix Estimator: Ĵ−1K̂Ĵ−1

θ̂ →p θo plus Uniform Weak Law of Large Numbers: Newey & McFadden (1994)

θo ≡ argmax
θ∈Θ

E [log f (yi ;θ)] θ̂ ≡ argmax
θ∈Θ

1
N

N∑
i=1

log f (y;θ)

√
N(θ̂ − θo)→d N (0, J−1KJ−1) θ̂ ≈ N (θo , Ĵ−1K̂Ĵ−1/N)

J ≡ −E
[
∂2 log f (yi ;θo)

∂θ∂θ′

]
Ĵ ≡ − 1

N

N∑
i=1

∂2 log f (yi ; θ̂)

∂θ∂θ′

K ≡ Var
[
∂ log f (yi ;θo)

∂θ

]
K̂ ≡ 1

N

N∑
i=1

[
∂ log f (yi ; θ̂)

∂θ

][
∂ log f (yi ; θ̂)

∂θ

]′
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Some Notes on the Preceding Slide

What happened to the KL divergence?
E[log po(y)] does not involve θ. Hence, argmax

θ∈Θ
E [log f (yi ;θ)] = argmin

θ∈Θ
KL(po , fθ).

Isn’t K̂ missing a term?
The sample variance of x is given by

(
1
N
∑N

i=1 xix′i
)
− (x̄x̄′) where x̄ = 1

N
∑N

i=1 xi . In
our formula for K̂, the “x̄x̄′” term appears to be missing, but it is in fact equal to zero,
since θ̂ is the solution to the MLE first-order condition.

Some Terminology
I will call Ĵ−1K̂Ĵ−1 the robust asymptotic variance matrix estimator, since it is correct
regardless of whether the model is correctly specified.
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A Simple Example Continued Again: Asymptotic Variance Calculations
Poisson(θ) model, possibly mis-specified.

Ingredients

log f (y ; θ) = −θ + y log(θ)− log(y !)
d
dθ log f (y ; θ) = −1 + y/θ

d2

dθ2 log f (y ; θ) = −y/θ2

θo = E[y ], θ̂ = ȳ

J = −E
[

d2

dθ2 log f (y ; θo)

]
= 1/E[y ]

Ĵ = − 1
N

N∑
i=1

d2

dθ2 log f (yi ; θ̂) = 1/ȳ

K = Var
[

d
dθ log f (y ; θo)

]
= Var(y)/E[y ]2

K̂ =
1
N

N∑
i=1

[
d
dθ log f (yi ; θ̂)

]2

= s2
y/(ȳ)2

where s2
y ≡ 1

N
∑N

i=1(yi − ȳ)2 and ȳ ≡ 1
N
∑n

i=1 yi
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A Simple Example Continued Again: Asymptotic Variance Calculations

From Previous Slide

θ0 = E[y ], J = 1/E[y ], Ĵ = 1/ȳ , K = Var(y)/E[y ]2, K̂ = s2
y/(ȳ)2

Correct Specification

y1, . . . , yN ∼ iid Poisson(θo) =⇒ J = K = 1/θo =⇒ J−1KJ−1 = θo = E[y ]

Potential Mis-specification

y1, . . . , yN ∼ iid =⇒ J = 1/E[y ], K = Var(y)/E[y ]2 =⇒ J−1KJ−1 = Var(y)
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A Simple Example Continued Again: Asymptotic Variance Calculations

Comparison of Asymptotic Distributions

y1, . . . , yN ∼ iid Poisson(θo) =⇒
√

N(θ̂ − θo) =
√

N(ȳ −E[y ])→d N (0,E[y ])

y1, . . . , yN ∼ iid =⇒
√

N(θ̂ − θo) =
√

N(ȳ −E[y ])→d N (0,Var[y ])

Comparison of Asymptotic 95% CIs

y1, . . . , yN ∼ iid Poisson(θo) =⇒ ȳ ± 1.96×
√

ȳ/N

y1, . . . , yN ∼ iid =⇒ ȳ ± 1.96× sy/
√

N

Punch Line
Unless Var(y) = E[y ], CIs/tests that assume the Poisson model is true are wrong!

MPhil ’Metrics, HT 2022 Lecture 1 – Slide 18



The Information Matrix Equality: if po(y) = f (y;θo), then K = J.

J ≡ −E
[
∂2 log f (y;θo)

∂θ∂θ′

]
, K ≡ Var

[
∂ log f (y;θo)

∂θ

]

Step 1: Alternative Expression for K

Var
[
∂ log f (y;θo)

∂θ

]
= E

[{
∂ log f (y;θo)

∂θ

}{
∂ log f (y;θo)

∂θ

}′]
−E

[
∂ log f (y;θo)

∂θ

]
E

[
∂ log f (y;θo)

∂θ

]′
but since θo maximizes E [log f (y;θ)],

E

[
∂ log f (y;θo)

∂θ

]
=

∂

∂θ
E [log f (y;θo)] = 0

so it suffices to show that

−E
[
∂2 log f (y;θo)

∂θ∂θ′

]
= E

[{
∂ log f (y;θo)

∂θ

}{
∂ log f (y;θo)

∂θ

}′]
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The Information Matrix Equality: if po(y) = f (y;θo), then K = J.

suffices to show −E
[
∂2 log f (y;θo)

∂θ∂θ′

]
= E

[{
∂ log f (y;θo)

∂θ

}{
∂ log f (y;θo)

∂θ

}′]

Step 2: Chain Rule & Product Rule
∂2

∂θi∂θj
log f (y;θ) = ∂

∂θi

[
∂

∂θj
log f (y;θ)

]
=

∂

∂θi

[
1

f (y;θ) · ∂

∂θj
f (y;θ)

]

=

[
− 1

f 2(y;θ) · ∂

∂θi
f (y;θ)

] [
∂

∂θj
f (y;θ)

]
+

1
f (y;θ) · ∂2

∂θi∂θj
f (y;θ)

= −
[

1
f (y;θ) · ∂

∂θi
f (y;θ)

] [
1

f (y;θ) · ∂

∂θj
f (y;θ)

]
+

1
f (y;θ) · ∂2

∂θi∂θj
f (y;θ)

= − ∂

∂θi
log f (y;θ) ∂

∂θj
log f (y;θ) + 1

f (y;θ) · ∂2

∂θi∂θj
f (y;θ)
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The Information Matrix Equality: if po(y) = f (y;θo), then K = J.

suffices to show −E
[
∂2 log f (y;θo)

∂θ∂θ′

]
= E

[{
∂ log f (y;θo)

∂θ

}{
∂ log f (y;θo)

∂θ

}′]

Step 3: Multiply by −1, Evaluate at θo , and Take Expectations

∂2

∂θi∂θj
log f (y;θ) = − ∂

∂θi
log f (y;θ) ∂

∂θj
log f (y;θ) + 1

f (y;θ) · ∂2

∂θi∂θj
f (y;θ)

−E
[

∂2

∂θi∂θj
log f (y;θo)

]
= E

[
∂

∂θi
log f (y;θo)

∂

∂θj
log f (y;θo)

]
−E

[
1

f (y;θo)
· ∂2

∂θi∂θj
f (y;θo)

]
︸ ︷︷ ︸

suffices to show this is zero!
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The Information Matrix Equality: if po(y) = f (y;θo), then K = J.

suffices to show E
[

1
f (y;θo)

· ∂2

∂θi∂θj
f (y;θo)

]
= 0

Step 4: Use po(y) = f (y;θo)

E

[
1

f (y;θo)
· ∂2

∂θi∂θj
f (y;θo)

]
≡
∫ [

1
f (y;θo)

· ∂2

∂θi∂θj
f (y;θo)

]
po(y) dy

=

∫ [
1

f (y;θo)
· ∂2

∂θi∂θj
f (y;θo)

]
f (y;θo) dy =

∫
∂2

∂θi∂θj
f (y;θo) dy

=
∂2

∂θi∂θj

∫
f (y;θo) dy =

∂2

∂θi∂θj
(1) = 0
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Lecture #2 – Poisson Regression

Review: Minimum MSE Predictor / Minimum MSE Linear Predictor

What’s special about count data?

Conditional Maximum Likelihood Estimation

Poisson Regression: A Robust Model for Count Data

Asymptotic Variance Calculations for Poisson Regression
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Review: Minimum MSE Predictor / Minimum MSE Linear Predictor

Suppose we want to predict y using x

Minimum MSE Predictor
µ(x) ≡ E(y |x) minimizes E

[
{y − ϕ(x)}2

]
over all possible predictors ϕ(·).

Minimum MSE Linear Predictor
β ≡ E [xx′]−1

E[xy ] minimizes E
[
(y − x′θ)2

]
over all linear predictors x′θ.
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Proof: E(y |x) is the minimum MSE predictor
Step 1: add and subtract µ(x) ≡ E(y |x)

E

[
{y − ϕ(x)}2

]
= E

[{(
y − µ(x)

)
−
(
ϕ(x)− µ(x)

)}2
]

= E
[
{y − µ(x)}2

]
− 2E [{y − µ(x)} {ϕ(x)− µ(x)}] +E

[
{ϕ(x)− µ(x)}2

]
Step 2: iterated expectations

E [{y − µ(x)} {ϕ(x)− µ(x)}] = E
(
E [{y − µ(x)} {ϕ(x)− µ(x)} |x]

)
= E

(
[ϕ(x)− µ(x)] [E(y |x)− µ(x)]

)
= 0

Step 3: combine steps 1 & 2

E

[
{y − ϕ(x)}2

]
= E

[
{y − µ(x)}2

]
︸ ︷︷ ︸

constant wrt ϕ

+ E

[
{ϕ(x)− µ(x)}2

]
︸ ︷︷ ︸

cannot be negative; zero if ϕ=µ
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Proof: OLS is the Minimum MSE Linear Predictor

Objective Function

E

[(
y − x′θ

)2
]
= E[y2]− 2E[yx′]θ + θ′

E
[
xx′
]
θ

Recall: Matrix Differentiation

∂(a′z)
∂z = a, ∂(z′Az)

∂z = (A + A′)z

First-Order Condition

−2E [xy ] + 2E[xx′]β = 0 =⇒ β = E
[
xx′
]−1

E [xy ]
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How to predict a count variable?

Example
Suppose we want to predict y using x, where:

I y ≡ # of children a woman has: a count variable, i.e. y ∈ {0, 1, 2, . . . }

I x ≡{years of schooling, age, married, etc.}
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Problems with linear-in-parameters models for count data

Best predictor is E(y |x) but how can we estimate this?

Plain-vanilla OLS?
I If E(y |x) ≈ x′β, OLS is a reasonable approach.

I Problem: y is a count so it can’t be negative, but OLS prediction x′β could be.

OLS for log(y)?

I Log-linear model log(y) = x′β + ε

I Solves the problem of negative predictions: log(y) can be negative.

I Problem: if y is a count it could equal zero but log(0) = −∞!
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A realistic model for count data must be nonlinear in parameters.

General Approach

I Assume that E(y |x) = m(x;β) where m is a known parametric function.

I Choose m so that it is always positive, regardless of x and β.

I This means m cannot be linear.

This Lecture: m(x;β) = exp (x′β)

I Always strictly positive

I Common choice in practice

I Everything I’ll discuss works with other choices of m, making appropriate changes.
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How to estimate βo?

Assumption: E(y |x) = exp (x′βo)

Using our argument from above, βo minimizes E
[
{yi − exp(x′iβ)}

2
]

over all β.

Nonlinear Least Squares (NLLS)
β̂NLLS is the minimizer of

∑N
i=1 {yi − exp (x′iβ)}

2

Poisson Regression (MLE)
β̂MLE is the MLE for βo under the model yi |xi ∼ indep. Poisson

(
exp(x′iβo)

)

MPhil ’Metrics, HT 2022 Lecture 2 – Slide 8



Conditional versus Unconditional MLE

Last Lecture: Unconditional MLE
Model unconditional dist. of a random vector y: f (y;θ).

This Lecture: Conditional MLE
Model conditional dist. of a random variable y given a random vector x: f (y|x;θ).

Why Conditional MLE?

I Unconditional MLE requires joint distribution: f (y , x;θ) = f (y |x;θ)f (x;θ)

I E(y |x) only depends on f (y |x;θ) not f (x;θ).

I Not interested in f (x;θ); coming up with a good model for it is challenging.
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The Conditional Maximum Likelihood Estimator
Assuming iid data.

Sample

θ̂ ≡ argmax
θ∈Θ

1
N

N∑
i=1

log f (yi |xi ;θ)

Population

θo ≡ argmax
θ∈Θ

E [log f (yi |xi ;θ)]

Important

I We only model the conditional distribution y |x, but…

I …the expectation E[log f (yi |xi ;θ)] is taken over the joint distribution of (y , x).

I f (yi |xi ;θ) is merely a function of the RVs (yi , xi).
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Conditional MLE Under Mis-specification

Theorem
Suppose that {xi , yi}Ni=1 ∼ iid po and let θ̂ denote the Conditional MLE for θ under
the possibly mis-specified model f (y|x;θ). Then, under regularity conditions:

(i) θ̂ is consistent for the pseudo-true parameter value θo , defined as the maximizer
of the expected log likelihood E [log f (y |x;θ)] over the parameter space Θ.

(ii)
√

N(θ̂ − θo)→d N (0, J−1KJ−1)

where we define J ≡ −E
[
∂2 log f (y|x;θo)

∂θ∂θ′

]
and K ≡ Var

[
∂ log f (y|x;θo)

∂θ

]
and all

expectations are taken with respect to po , the true joint distribution of (y, x).
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Conditional MLE Under Correct Specification

Corollary
Suppose that f (y|x;θo) is the true conditional distribution of yi |xi . Then, under the
conditions of the preceding theorem,

(i) θ̂ is consistent for θo

(ii)
√

N(θ̂ − θo)→d N (0, J−1) where J ≡ −E
[
∂2 log f (y|x;θo)

∂θ∂θ′

]
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Poisson Regression as a Conditional MLE

Model: yi |xi ∼ Poisson
(
exp {x′

iβ}
)

`i(β) ≡ log f (yi |xi ;β) = yix′iβ − exp(x′iβ)− log (yi !)

si(β)︸ ︷︷ ︸
score vector

≡ ∂`i(β)

∂β
= xi

[
yi − exp

(
x′iβ
)]

β̂ solves 1
N

N∑
i=1

xi
[
yi − exp

(
x′iβ
)]︸ ︷︷ ︸

residual: ui

=
1
N

N∑
i=1

xiui(β) = 0
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What value of β maximizes E [`i(β)] for Poisson Regression?

Iterated Expectations

E[`i(β)] = E {E [`i(β)|xi ]} = E
{
E
[
yix′iβ − exp(x′iβ)− log (yi !) |xi

]}
Simplify Inner Expectation

E [`i(β)|xi ] = x′iβE [yi |xi ]− exp
(
x′iβ
)
−E [log (yi !) |xi ]︸ ︷︷ ︸

constant wrt β

FOC for Inner Expectation
∂

∂β
E [`i(β)|xi ] =

{
E [yi |xi ]− exp

(
x′iβ
)}

xi = 0
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What value of β maximizes E [`i(β)]?

∂

∂β
E [`i(β)|xi ] =

{
E [yi |xi ]− exp

(
x′iβ
)}

xi = 0

What does this mean?
Since E [yi |xi ] = exp (x′iβo), setting β = βo solves the FOC for the inner expectation!

In other words:
For any realization of xi and any β,

E[`i(β)|xi ] ≤ E[`i(βo)|xi ]

so taking expectations of both sides:
E [`i(β)] = E {E[`i(β)|xi ]} ≤ E {E[`i(βo)|xi ]} = E [`i(βo)]
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Poisson Regression is consistent if E(y |x) is correctly specified.
We showed this for a particular choice of m(x;β) but the result is general.

Result
Provided that we have correctly specified E(yi |xi), it doesn’t matter if yi |xi actually
follows a Poisson distribution: Poisson regression is still consistent for βo .

Compare
This is very similar to our result for the Poisson(θ) model from last lecture.

Caveat
Strictly speaking we need to show that βo is the unique maximizer of the expected log
likelihood. Multiple solutions if xi perfectly co-linear (compare to OLS regression).
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Average Partial Effects

Partial Effects
For continuous xj , we call ∂

∂xj
E(y |x) the partial effect of xj . For discrete xj the partial

effect is the difference of E(y |x) at two different values of xj

Average Partial Effects (APE)
In nonlinear models, partial effects typically vary with x. The average partial effect is
the expectation of the partial effect over the distribution of x.
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Average Partial Effects for Poisson Regression

Partial Effect
∂
∂xj
E(y |x) = ∂

∂xj
exp (x′iβ) = exp (x′iβ)βj

Estimated Partial Effect
exp

(
x′i β̂
)
β̂j

Average Partial Effect
E

[
∂
∂xj

exp (x′iβ)
]
= E [exp (x′iβ)]βj

Estimated Average Partial Effect[
1
N
∑N

i=1 exp
(

x′i β̂
)]

β̂j

Relative Effects
The ratio of partial effects does not depend on x: relative effects are constant.

Problem Set
Poisson regression: APE=ȳ β̂j . Multiply by ȳ to put coefficients on the scale of OLS.
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Asymptotic Variance Calculations for Poisson Regression

si(β)︸ ︷︷ ︸
score vector

≡ ∂`i(β)

∂β
= xi

[
yi − exp

(
x′iβ
)]

= xiui(β)

Hi(β)︸ ︷︷ ︸
Hessian matrix

≡ ∂si(β)

∂β′ = − exp
(
x′iβ
)

xix′i

J ≡ −E [Hi(βo)] = E
[
exp

(
x′iβo

)
xix′i

]
K ≡ Var [si(βo)] = E

[
si(βo)si(βo)

′] = E
[
u2

i (βo)xix′i
]
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Asymptotic Variance Calculations for Poisson Regression

J = E
[
exp

(
x′iβo

)
xix′i

]
, K = E

[
u2

i (βo)xix′i
]

Notice
J does not depend on y but K does:

K = E
[
u2

i (βo)xix′i
]
= E

{
E
[
u2

i (βo)|xi
]

xix′i
}
= E

(
E

[
{yi −E(yi |xi)}2 |xi

]
xix′i

)
= E

[
Var(yi |xi)xix′i

]
Assumptions about Var(y |x) affect the asymptotic variance through K.

MPhil ’Metrics, HT 2022 Lecture 2 – Slide 20



Possible Assumptions for Var(y |x): Strongest to Weakest

1. Poisson Assumption: Var(y |x) = E(y |x)
I holds if Poisson model is correct.

2. Quasi-Poisson Assumption: Var(y |x) = σ2
E(y |x)

I Allows for possibility that y |x is not Poisson
I Overdispersion: σ2 > 1 =⇒ Var(y |x) > E(y |x)
I Underdispersion σ2 < 1 =⇒ Var(y |x) < E(y |x)
I If σ2 = 1 we’re back to the Poisson Assumption.

3. No Assumption: Var(y |x) unspecified
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Asymptotic Variance Under Poisson Assumption

J = E
[
exp

(
x′iβo

)
xix′i

]
, K = E

[
Var(yi |xi)xix′i

]

Assumption: Var(yi |xi) = E(yi |xi) = exp (x′
iβo)

I Implies K = E [exp (x′iβo) xix′i ]

I Hence K = J (Information Matrix Equality)

I Therefore:
√

N(β̂ − βo)→d N (0, J−1)

I Consistent Estimator: Ĵ−1 =

[
1
N

N∑
i=1

exp
(

x′i β̂
)

xix′i

]−1
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Asymptotic Variance Under Quasi-Poisson Assumption

J = E
[
exp

(
x′iβo

)
xix′i

]
, K = E

[
Var(yi |xi)xix′i

]

Assumption: Var(yi |xi) = σ2
E(yi |xi) = σ2 exp (x′

iβo)

I Implies K = σ2
E [exp (x′iβo) xix′i ] = σ2J

I Hence J−1KJ−1 = σ2J−1

I Therefore:
√

N(β̂ − βo)→d N (0, σ2J−1)

I Consistent estimator of J−1 on prev. slide but how can we estimate σ2?
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How to estimate σ2 under the Quasi-Poisson Assumption?

Var(y |x) = σ2
E(y |x)

σ2 = Var(y |x)/E(y |x)

σ2 = E
[
{y −E(y |x)}2 |x

]
/E(y |x)

σ2 = E

[
{y −E(y |x)}2

E(y |x)

∣∣∣∣ x]
σ2 = E

[
{y − exp(x′βo)}

2

exp(x′βo)

∣∣∣∣∣ x
]

E[σ2] = E

(
E

[
{y − exp(x′βo)}

2

exp(x′βo)

∣∣∣∣∣ x
])

σ2 = E

[
{y − exp(x′βo)}

2

exp(x′βo)

]
σ2 = E

[
u2(βo)/ exp(x

′βo)
]

Consistent Estimator of σ2

σ̂2 =
1
N

N∑
i=1

[yi − exp(x′
i β̂)]

2

exp(xi β̂)
=

1
N

N∑
i=1

û2
i

exp(xi β̂)
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Robust Asymptotic Variance Matrix

J = E
[
exp

(
x′iβo

)
xix′i

]
, K = E

[
u2

i (βo)xix′i
]

No Assumption on Var(yi |xi)

I
√

N(β̂ − βo)→d N (0, J−1KJ−1)

I Consistent Estimator: Ĵ−1 =

[
1
N

N∑
i=1

exp
(

x′i β̂
)

xix′i

]−1

I Consistent Estimator: K̂ =
1
N

N∑
i=1

[
yi − exp(xi β̂)

]2
xix′i =

1
N

N∑
i=1

û2
i xix′i
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Why Poisson Regression rather than NLLS?

Assume that E(y |x) = exp (x′βo)

Both Poisson Reg. & NLLS are consistent if the conditional mean is correctly specified.

Count data are typically heteroskedastic.
If Var(y |x) varies with x, NLLS will be relatively inefficient.

Efficiency of Poisson Regression

I Correct model =⇒ lowest variance among all estimators that leave the
distribution of x unspecified.

I Var(y |x) = σ2
E(y |x) =⇒ Poisson regression is more efficient than NLLS and

various other count data models.
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Lecture #3 – Models for Binary Outcomes

Properties of Binary Outcome Models

Linear Probability Model

Index Models (e.g. Logit & Probit)

Partial Effects

Conditional MLE for Index Models

Pseudo R-squared

MPhil ’Metrics, HT 2022 Lecture 3 – Slide 1



Models for Binary Outcomes

Example

I Outcome: y = 1 if employed, 0 otherwise

I Predictors/Regressors: x = {age, sex, education, experience, …}

Question
How does xj affect our prediction of y holding the other regressors constant?

We’ll consider three models:
1. Linear Probability Model (LPM)

2. Logistic Regression (Logit)

3. Probit Regression (Probit)
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Properties of Binary Outcome Models: y ∈ {0, 1}

Notation
p(x) ≡ P(y = 1|x)

Conditional Mean
E(y |x) = p(x)

Conditional Variance
Var(y |x) = p(x) [1− p(x)]

E(y |x) = 0×P(y = 0|x) + 1×P(y = 1|x)

= P(y = 1|x) ≡ p(x)

E(y2|x) =
{

02 × [1− p(x)] + 12 × p(x)
}

= p(x)

Var(y |x) = E(y2|x)−E(y |x)2

=
{

02 × [1− p(x)] + 12 × p(x)
}
− p(x)2

= p(x) [1− p(x)]
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The Linear Probability Model: Assume p(x) = x′β

Conditional Mean & Variance
I E(y |x) = p(x) = x′β

I Var(y |x) = x′β (1− x′β)

This is just Linear Regression!
y = x′β + u, E(u|x) = 0

But u is Heteroskedastic
Var(u|x) = x′β(1− x′β)

E(u|x) = E(y − x′β|x) = E(y |x)− x′β

= x′β − x′β = 0

Var(u|x) = E

[
{u −E(u|x)}2 |x

]
= E

[
u2|x

]
= E

[(
y − x′β

)2 |x
]

= E
(
y2|x

)
− 2E (y |x) x′β +

(
x′β
)2

= p(x)− 2p(x)p(x) + p(x)2

= p(x) [1− p(x)]
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The Linear Probability Model: Assume p(x) = x′β

Estimation
Since E(u|x) = 0 OLS estimation of y = x′β + u is unbiased and consistent.

Inference
Since u is heteroskedastic, tests and CIs should use robust standard errors.

Is the LPM actually reasonable?

I Assumes p(x) = x′β =⇒ changing xj by ∆ changes p(x) by βj∆

I If x contains regressors without upper/lower bounds, p(x) could be > 1 or < 0!

I LPM could be a reasonable approximation but cannot be literally true.
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Index Models: Constrain p(x) to lie in [0, 1]

Index Model: p(x) = G(x′β)

Assume x includes a constant, 0 ≤ G(·) ≤ 1, G is differentiable and strictly increasing,
limz→∞ G(z) = 1, and limz→−∞ G(z) = 0.

Terminology
We call x′β the linear index and G the index function.

Partial Effects
Let g(z) ≡ d

dz G(z). Then ∂
∂xj

p(x) = g(x′β)βj . Hence:

I The partial effect of xj depends on the value of x at which we evaluate g .

I G strictly increasing =⇒ g(·) > 0 =⇒ sign of partial effect determined by βj .
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Possible Choices of Index Function

CDFs as Index Functions
G satisfies the index model assumptions (prev. slide) iff it is a continuous CDF.

We focus on two examples:

1. Logit: G(z) = Λ(z) ≡ exp(z)/ [1 + exp(z)]

2. Probit: G(z) = Φ(z) ≡
∫ z

−∞

1√
2π

exp
(
−t2/2

)
dt

Notation:
I Λ is the CDF of a “standard logistic” RV and Φ of a standard normal RV.

I λ is the density of a “standard logistic” RV and ϕ of a standard normal

I To treat Logit and Probit simultaneously, we’ll write G as a placeholder.
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Standard Logistic and Normal Densities and CDFs
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Partial Effects: ∂p(x)/∂xj

LPM
∂

∂xj
x′β = βj

Logit
∂

∂xj
Λ(x′β) = βj exp(x′β)

[1 + exp(x′β)]2

Probit
∂

∂xj
Φ(x′β) = βj exp{−(x′β)2/2}√

2π

∂

∂xj
G(x′β) = g(x′β)βj

d
dz Λ(z) ≡ λ(z) = d

dz

(
ez

1 + ez

)
=

ez(1 + ez)− ezez

(1 + ez)2

=
ez

(1 + ez)2

d
dz Φ(z) = ϕ(z) =

exp
{
−z2/2

}
√

2π
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Comparing Logit, Probit, and LPM Partial Effects

∂

∂xj
G(x′β) = g(x′β)βj ,

d
dz Λ(z) ≡ λ(z) = ez

(1 + ez)2 ,
d
dz Φ(z) ≡ ϕ(z) =

exp
{
−z2/2

}
√

2π

Maximum Partial Effects
I λ and ϕ are unimodal with mode at 0

Logit λ(0) = 0.25
Probit ϕ(0) = (2π)−1/2 ≈ 0.4

I Maximum partial effect when x′β = 0
Logit βjλ(0) = 0.25βj

Probit βjϕ(0) ≈ 0.4βj

I LPM has constant partial effects βj

Relative Effects

∂
∂xj

p(x)
∂
∂xh

p(x)
=

βjg(x′β)
βhg(x′β) =

βj
βh

Relative effects do not depend on x.
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Average Partial Effects for Index Models

Partial Effect
∂

∂xj
G(x′iβ) = g(x′iβ)βj

Average Partial Effect
E

[
∂

∂xj
G(x′iβ)

]
= E[g(x′iβ)]βj

Estimated Partial Effect
∂

∂xj
G(x′i β̂) = g(x′i β̂)β̂j

Estimated Average Partial Effect[
1
N

N∑
i=1

g(x′i β̂)
]
β̂j

Warning:
APE 6= partial effect evaluated at the average value of x since E[f (Z)] 6= f (E[Z ]).
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Conditional MLE for Index Models: iid Observations
Conditional Likelihood

f (yi |xi ,β) =

{
1− G(x′iβ) if yi = 0
G(x′iβ) if yi = 1

⇐⇒ f (yi |xi ,β) = G(x′iβ)yi [1− G(x′iβ)]
1−yi

Conditional Log-Likelihood

`i(β) ≡ log f (yi |xi ,β) = yi log [G(x′iβ)] + (1− yi) log [1− G(x′iβ)]

Sample

β̂ ≡ argmax
β∈Θ

1
N

N∑
i=1

`i(β)

Population

βo ≡ argmax
β∈Θ

E [`(β)]

Correct specification: E(y |x) = p(x) = G(x′βo). Otherwise βo = KL-minimizer.
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Asymptotic Variance Calculations for Index Models
Recall from last lecture.

Possibly Mis-specified Model
√

N(β̂ − βo)→d N (0, J−1KJ−1) where J = −E [Hi(βo)] and K = E [si(βo)si(βo)
′]

Correct Specification
√

N(β̂ − βo)→d N (0, J−1) where J = −E [Hi(βo)]

Asymptotic variance calculations for index models are complicated, but there’s a clever
trick for computing J under correct specification.
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Asymptotic Variance Calculation for Correctly Specified Index Models

`i(β) = yi log {G(x′iβ)}+ (1− yi) log {1− G(x′iβ)}

Step 1: Calculate The Score Vector

si ≡
∂

∂β
`i(β) =

yig(x′iβ)xi
G(x′iβ)

− (1− yi)g(x′iβ)xi
1− G(x′iβ)

=
g(x′iβ)xi

G(x′iβ) [1− G(x′iβ)]
{[1− G(x′iβ)] yi − G(x′iβ)(1− yi)}

=
g(x′iβ)xi [yi − G(x′iβ)]
G(x′iβ) [1− G(x′iβ)]
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Asymptotic Variance Calculation for Correctly Specified Index Models

si =
g(x′iβ)xi {yi − G(x′iβ)}
G(x′iβ) {1− G(x′iβ)}

Step 2: Start Calculating the Hessian but give up because it’s a nightmare.

Hi(β) ≡
∂si

∂β′ =
∂

∂β′

(
[yi − G(x′iβ)]

[
g(x′iβ)xi

G(x′iβ) {1− G(x′iβ)}

])

=
−g(x′iβ)2xix′i

G(x′iβ) {1− G(x′iβ)}
+ [yi − G(x′iβ)]

∂

∂β′

{
g(x′iβ)xi

G(x′iβ) [1− G(x′iβ)]

}
︸ ︷︷ ︸

a nasty awful mess: call it M(xi ,β)
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Asymptotic Variance Calculation for Correctly Specified Index Models

Hi(β) =
−g(x′iβ)2xix′i

G(x′iβ) {1− G(x′iβ)}
+ [yi − G(x′iβ)]M(xi ,β)

Step 3: Calculate the Conditional Expectation at βo instead…

E [Hi(βo)|xi ] =
−g(x′iβo)

2xix′i
G(x′iβo) {1− G(x′iβo)}

+ E [yi − G(x′iβo)|xi ]︸ ︷︷ ︸
equals zero under correct spec.

M(xi ,βo)

=
−g(x′iβo)

2xix′i
G(x′iβo) {1− G(x′iβo)}

Step 4: Iterated Expectations

J = −E [Hi(βo)] = −E {E [Hi(βo)|xi ]} = E
{

g(x′iβo)
2xix′i

G(x′iβo) {1− G(x′iβo)}

}
MPhil ’Metrics, HT 2022 Lecture 3 – Slide 16



Asymptotic Variance Calculation for Correctly Specified Index Models

Asymptotic Distribution
√

N(β̂ − βo) →d N
(

0, J−1
)
, J−1 = E

{
g(x′

iβo)
2xix′

i
G(x′

iβo) {1 − G(x′
iβo)}

}−1

Consistent Estimator

Ĵ−1 ≡

 1
N

N∑
i=1

g(x′
i β̂)

2xix′
i

G(x′
i β̂)
[
1 − G(x′

i β̂)
]


−1

Notes
I Assumes correct specification, i.e. p(x) = E(y |x) = G(x′βo)

I In contrast, robust variance matrix J−1KJ−1 is complicated, but R can do it.
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McFadden (1974) – “Pseudo R-squared”

Model with Intercept Only
L(ȳ) ≡ maximized sample Likelihood
`(ȳ) ≡ maximized sample log-likelihood

Full Model
L(β̂) ≡ maximized sample Likelihood
`(β̂) ≡ maximized sample log-likelihood

Pseudo R-squared
R̃2 ≡ 1− `(β̂)/`(ȳ)

Problem set: R̃2 ∈ [0, 1]

0

-4

-2

0

`(β̂)

L(β̂)

`(ȳ)

L(ȳ)

R̃2 = 1−
(
−1
−3

)
≈ 0.66
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Lecture #4 – Random Utility Models

Overview of Random Utility Models

Identification of Choice Models

Index Models as Special Cases (e.g. Logit & Probit)

The Logit Family of Choice Models

The Independence of Irrelevant Alternatives (IIA)
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Discrete Choice – Basic Terminology

Decision-maker
Household, person, firm, etc.

Alternatives
Products, courses of action, etc.

Choice Set
The collection of all alternatives available to the decision-maker.
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Restrictions on the Choice Set

We assume that:
1. Choices are mutually exclusive: choose only one alternative.

2. Choice set is exhaustive: contains every alternative (always choose something)

3. The number of alternatives is finite.

We can always redefine the choice set to satisfy 1 and 2

{Beer,Pizza}︸ ︷︷ ︸
not mutually exclusive

→ {Beer only,Pizza only,Beer and Pizza}︸ ︷︷ ︸
mutually exclusive

{Beer only,Pizza only,Beer and Pizza}︸ ︷︷ ︸
not exhaustive

→ {Beer only,Pizza only,Beer and Pizza, Something Else}︸ ︷︷ ︸
exhaustive
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Random Utility Models (RUMs)
Following Train (2009), use n to index individuals!

Notation
I N decision-makers n = 1, . . . ,N

I J alternatives j = 1, . . . , J .

Utility and Decision Rule

I Decision-maker n obtains utility Unj from choosing alternative j

I Maximize utility: decision-maker n chooses alternative i iff Uni > Unj for any j 6= i
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Random Utility Models
Researcher Observes
I Attributes xnj of each alternative (e.g. product characteristics)

I Attributes sn of the decision-maker (e.g. demographics)

I Choices but not utilities

Representative Utility Vnj

Assume researcher can specify a function Vnj(xnj , sn) relating attributes xnj of each
alternative j and attributes sn of each decision-maker n to her utilities Unj .

Error Terms εnj

εnj ≡ Unj − Vnj is the difference between true utility Unj and representative utility Vnj
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Random Utility Models (RUMs)

What are the error terms?
εnj for j = 1, . . . , J represent unobserved factors that affect choices but are not
captured by representative utilities (i.e. our model)

Treat Errors as Random
Let ε′n ≡ [ εn1 . . . εnJ ] have density function f (εn). Characterizes unobserved
heterogeneity across decision-makers.

Choice Probabilities

Pni ≡ P(Uni > Unj ∀j 6= i) =
∫
RJ
1 {εnj − εni < Vni − Vnj ∀j 6= i} f (εn) dεn
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This all sounds a bit abstract…

Basic Idea
1. Write down a parametric model for Vnj(xnj , sn) with unknown parameters θ.

2. Choose a distribution f for the errors (heterogeneity) εn.

3. Back out choice probabilities as a function of parameters θ.

4. Use observed choices and attributes to find the MLE θ̂.

Looking Back; Looking Ahead

I Logit and Probit are special cases of RUMs: choice between two alternatives.

I RUMs provide a framework to estimate more complicated discrete choice models.
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A Very Simple Example

Transport Decision

I Exactly two ways to get to work: by car or by bus.

I Observe two attributes: cost in time T and money M of each mode of transport.

Econometrician’s Model: (β, γ) unknown

Vcar = βTcar + γMcar Ucar = Vcar + εcar

Vbus = βTbus + γMbus Ubus = Vbus + εbus

Choice Probabilities
Pcar = P(εbus − εcar < Vcar − Vbus)

Pbus = P(εcar − εbus < Vbus − Vcar) = 1− Pcar
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A Very Simple Example: Who drives to work?

What is common?
Parameters: (β, γ). Our goal is to estimate these.

Observed Heterogeneity

I Alice lives next to the bus stop: her Tbus is low.

I Bob is 70 and gets a discount on public transport: his Mbus is low.

I Clara and her roommates work at the same office and can carpool: her Mcar is low.

Unobserved Heterogeneity
James hates to drive (εcar − εbus < 0) but Steve loves driving (εcar − εbus > 0).
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The Likelihood for Random Utility Models

Notation
I yn ∈ {1, . . . , J} ≡ n’s choice.

I zn vector of all regressors for n

I θ vector of all unknown parameters

I Choice Probs. Pni ≡ P(yn = i |zn,θ)

Note
Likelihood is easy, but choice probabilities
are usually hard (logit is an exception).

Likelihood
f (yn|zn,θ) =

∏J
j=1 P1{yn=j}

nj

Log Likelihood
`N(θ) =

∑N
n=1

∑J
j=1 1 {yn = j} logPnj

Example: Logit Choice Probabilities
Pni = exp(Vni)/

∑J
j=1 exp(Vnj)
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Identification – What can we learn from data?

Identification
A parameter is identified if it could be uniquely determined by observing the whole
population of data from which our sample was drawn.

E.g. Car versus Bus
Are (β, γ) from Vnj = βTnj + γMnj identified?

Recall from Microeconomics
1. Only differences in utility matter for choices.

2. The scale of utility is irrelevant.
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Only Differences in Utility Matter

All that matters for choices is how much better/worse an alternative is than the others:

P(Uni > Unj ∀j 6= i) = P (Uni − Unj > 0 ∀j 6= i)

Consequences

1. Only differences in errors matter.

2. We cannot identify a different intercept for each alternative.

3. We can only identify differences of effects for decision-maker attributes.
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Only Differences in Errors Matter

Notation
I ε̃njk ≡ εnj − εnk be the difference of errors εnj and εnk .
I ε̃ni ≡ vector of all unique differences, taking εni as the “base case”

I E.g. ε′n = (εn1, εn2, εn3) =⇒ ε̃′n1 = (εn2 − εn1, εn3 − εn1)

I Note: J errors ⇒ (J − 1) unique differences

I Let g be the joint density of ε̃ni .

Choice Probabilities

Pni ≡ P (Uni > Unj ∀j 6= i) = P(εnj − εni < Vni − Vnj ∀j 6= i)

= P(ε̃nji < Vni − Vnj ∀j 6= i) =
∫
RJ−1

1 {ε̃nji < Vni − Vnj ∀j 6= i} g(ε̃ni) d ε̃ni
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If there are J alternatives, we can identify only (J − 1) intercepts.
Equivalently: normalize one intercept to zero.

Intercept ⇒ E [εnj ] = 0

I Suppose Unj = x′njβ + ε∗nj where xnj excludes a constant and E[ε∗nj ] 6= 0.

I Equivalent model: Unj = αj + x′njβ + εnj where E[εnj ] = 0 by construction.

Why not a different intercept for each alternative?

Ucar = αcar + βTcar + γMcar + εcar

Ubus = αbus + βTbus + γMbus + εbus

Ubus − Ucar = (αbus − αcar) + β (Tbus − Tcar) + γ (Mbus −Mcar) + (εbus − εcar)
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Only differences of effects for decision-maker attributes are identified.

Can we identify the effects of income Y separately for Bus and Car?

Ucar = θcarY + βTcar + γMcar + εcar

Ubus = θbusY + βTbus + γMbus + εbus

Ubus − Ucar = (θbus − θcar)Y + β (Tbus − Tcar) + γ (Mbus −Mcar) + (εbus − εcar)

Equivalent to normalizing one of the θs to zero.
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More on Identification – The Scale of Utility is Irrelevant

Why?

I Let λ be an arbitrary positive constant.

I Rational Choice: select i if and only if Uni > Unj for all j 6= i

I Equivalently: select i if and only if λUni > λUnj for all j 6= i

Var(εnj) determines the scale of β

I Unj = x′njβ + εnj , Var(εnj) = σ2 ⇐⇒ U∗
nj = x′nj(β/σ) + ε∗nj , Var(ε∗nj) = 1

I Can’t directly compare coefs. across models with different normalizations for εnj .

I Recall: we had to re-scale Logit and Probit coefs. to compare them.
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How to obtain the index models from last lecture? (E.g. Probit and Logit)

1. Two alternatives, e.g. Bus or Something Else

2. Let yn = 1 if decision-maker n chooses alternative 1; zero otherwise.

3. Vnj = s′nγ j (representative utility depends only on attributes of decision-maker)

4. (εn2 − εn1) ∼ G independently of sn.

Un1 − Un2 = (s′nγ1 − s′nγ2) + (εn1 − εn2) = s′n(γ1 − γ2) + (εn1 − εn2)

= s′nγ + (εn1 − εn2)

P(yn = 1|sn) = P(Un1 − Un2 > 0|sn) = P(εn2 − εn1 < s′nγ|sn) = G(s′nγ)
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The Logit Family of Choice Models

Theorem
Suppose that εn1, . . . εnJ ∼ iid F where F (z) = exp {− exp (−z)}. Then,

Pni = P(εnj − εni < Vni − Vnj ∀j 6= i) = exp (Vni)∑J
j=1 exp (Vnj)

Notes
I This is a special case where the choice probabilities have a closed-form solution!

I F (z) = exp {− exp (−z)} is the Gumbel aka Type I Extreme Value CDF

I Corollary: the difference of independent Gumbel RVs is a standard Logistic RV
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The Gumbel Distribution (aka Type I Extreme Value)
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Different specifications of Vnj yield different models.

Multinomial Logit

I Vnj = s′nγ j ← only attributes that are fixed across alternatives (e.g. n’s income)

I Can only identify differences (γ j − γ i). Typical to normalize γ1 = 0.

Conditional Logit

I Vnj = x′njβ ← only attributes that vary across alternatives (e.g. price)

I Note that β is fixed across alternatives.

Mixed Logit

I Vnj = s′nγ j + x′njβ ← a combination of the two
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Interpreting Multinomial Logit Coefficients
I Partial effects tricky to derive and interpret.

I Better approach: partial effects for relative risk

I Normalizing γ1 = 0, we have exp(snγ1) = exp(0) = 1. Hence,

Pni
Pn1

=
exp (snγ i)∑J

j=1 exp
(
snγ j

) × ∑J
j=1 exp

(
snγ j

)
exp (snγ1)

=
exp(snγ i)

exp(snγ1)
= exp(snγ i)

I Taking logs: log (Pni/Pn1) = log [exp(snγ i)] = s′nγ i .

Punchline
γ
(k)
i is the marginal effect of s(k)n on the relative probability that y = i compared to

y = 1 measured on the log scale – e.g. taking the bus relative to driving.
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Interpreting Conditional Logit Coefficients
You’ll derive these on the problem set!

Partial Effects
I The attributes xnj are specific to a particular alternative j.

I Hence: partial effects are much simpler for conditional logit than multinomial.

Own Attribute

∂Pnj
∂xnj

= Pnj(1− Pnj)β

Cross-Attribute (j 6= i)

∂Pnj
∂xni

= −PnjPniβ

If increasing x(k)nj makes y = j more likely, it must make y = i less likely
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The Independence of Irrelevant Alternatives (IIA)
Or why people don’t like logit models…

Logit Choice Probabilities

Pni =
exp(Vni)∑J

j=1 exp(Vnj)
=⇒ Pni

Pnj
= exp(Vni − Vnj)

In Words
The relative probability of choosing i versus j only depends on the representative
utilties for i and j. This is called the independence of irrelevant alternatives (IIA).

Why is this a problem
IIA arises in logit models because εn1, . . . , εnJ are independent. In reality “some
alternatives are more similar than others,” i.e. errors may be correlated.
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An Example where IIA is Unreasonable – Choosing Presidential Candidates

Model
I Vnj = (Demographicsn)

′γ j + (Ideologynj)
′β

I (Ideologynj) = similarity between voter n’s ideology and candidate j’s.

I Candidates = {Trump,Sanders,Warren}

Consider a group of voters who all have the same demographics and ideology
E.g. white, centrist, female, mid-westerners between the age of 45 and 50 with an
average household income between $50 and $55 thousand USD.

Same regressors ⇒ same Vnj

Vnj doesn’t vary over n within the group: {VTrump,VSanders,VWarren}
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An Example where IIA is Unreasonable – Choosing Presidential Candidates

Two-way Race
Suppose 2/3 of this group of voters chooses Sanders over Trump: PSanders/PTrump = 2

Assumption
Sanders and Warren are ideologically similar =⇒ VWarren ≈ VSanders

Implications of Logit

I Relative choice probabilities are the same in a two-way race or a three-way race.

I PWarren/PSanders = exp (VWarren − VSanders) ≈ 1
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An Example where IIA is Unreasonable – Choosing Presidential Candidates

Logit Implication for Three-way Race
PSanders = 2PTrump, PSanders ≈ PWarren, PTrump + PSanders + PWarren = 1

=⇒ PTrump + 2PTrump + 2PTrump = 1

PTrump = 1/5

PWarren = PSanders = 2/5

What we’d actually expect in a Three-way Race
1/3 Trump, 1/3 Sanders and 1/3 Warren – i.e. Warren “splits” the Sanders vote.

What’s going wrong?
Logit assumes εWarren and εSanders are independent but in reality they’re not.
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Lecture #5 – Sample Selection

Examples of Sample Selection

The Heckman Selection Model

Proof of First Lemma

Proof of Second Lemma

The Expectation of a Truncated Normal
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What is sample selection?

Question
Thus far we have always assumed that (y1, x1), . . . , (yN , xN) are a random sample from
the population of interest. What if they aren’t?

Example 1: MPhil Admissions

I Suppose we want to improve admissions decisions at Oxford.

I y ≡ overall marks in 1st year of Oxford Economics MPhil

I x ≡ {undergrad grades, letters of reference, . . . }

I What we observe: x for all applicants; y for applicants who were admitted.

I What we want: E(y |x) for all applicants.
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Example 2: A Model of Wage Offers
Gronau (1974; JPE)

Question
How do wage offers offers wo

i vary with xi for all people in the population.

Problem
Only observe wo

i for people who accept their offer, i.e. those who are employed.

Mathematically
E(wo

i |xi) 6= E(wo
i |xi ,Employed)
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The Heckman Selection Model — Is β1 identified?

Outcome Equation
y1 = x′1β1 + u1

Participation Equation
y2 = 1 {x′δ2 + v2 > 0}

Assumptions

(a) Observe y2, x′ = (x′1, x′2); only observe y1 if y2 = 1.

(b) (u1, v2) are mean zero and jointly independent of x.

(c) v2 ∼ Normal(0, 1)

(d) E(u1|v2) = γ1v2 where γ1 is an unknown constant.

Notes
I E(u1) = E(v2) = 0 is not restrictive: just include intercepts in both equations.

I Assumption (d) would be implied by assuming that (u1, v2) are jointly normal.

I These assumptions are strong. They can be weakened somewhat.
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Two Lemmas =⇒ β1 Identified from Two Simple Regressions

Lemma 1: E(y1|x, y2 = 1) = x′
1β1 + γ1E(v2|x, y2 = 1)

I Shorthand: h(x) ≡ E(v2|x, y2 = 1)

I (β1, γ1) identified from regression of y1 on [x1, h(x)] for selected population.

Lemma 2: E(v2|x, y2 = 1) = ϕ(x′δ2)/Φ(x′δ2)

I h(x) = λ(x′δ2) where λ(c) ≡ ϕ(c)/Φ(c) is called the inverse Mills ratio

Probit Identifies δ2

I (y2, x) observed for full sample and y2 = 1{x′δ2 + v2 > 0} where v2 ∼ N(0, 1)
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The Heckman Two-step Estimator aka “Heckit”

Observables
Observe (y2i , xi) for a random sample of size N; only observe y1i for those with y2i = 1.

First Step – Estimate δ2 from Full Sample

I Run Probit on the Participation Eq. P(y2i = 1|xi) = Φ(x′iδ2) for the full sample.

I Define λ̂i ≡ λ(x′i δ̂2) where δ̂2 is the MLE for δ2.

Second Step – Estimate (β1, γ1) from Selected Sample
Using the observations for which yi1 is observed, regress yi1 on (x1i , λ̂i) by OLS to
obtain estimates (β̂1, γ̂1).
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The Big Picture: How does Heckit solve the selection problem?

I If we regress y1i on x1i for the selected sample, there is an omitted variable.

I Under the Heckit assumptions, the omitted variable is precisely λ(x′iδ2).

I Hence: a regression of y1i on x1i and λ(x′iδ2) is correctly specified.
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Why is the second step regression identified?

Second Step Regression
y1i on [x1i , λ(x′i δ̂2)] for selected sample

Exclusion Restriction
xi contains some variables not in x1i

No Exclusion Restriction
I λ(c) ≡ ϕ(c)/Φ(c) is nonlinear

I λ(x′1iδ2) and x1i are not co-linear

I Identification is less credible

I λ close to linear: noisy estimates -4 -2 0 2 4

0
1

2
3

4

Inverse Mills Ratio

c

ϕ(c)
Φ(c)
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Asymptotics for “Heckit”

Theorem
Under our assumptions and some regularity conditions, the “Heckit” estimators satisfy

δ̂2

β̂1

γ̂1

→p


δ2

β1

γ1

 and
√

N


δ̂2 − δ2

β̂1 − β1

γ̂1 − γ1

→d Normal(0,Ω) as N →∞.

Standard Errors
The asymptotic variance matrix Ω is complicated: the usual OLS standard errors from
step two are incorrect as they do not account for the estimation of δ2 in step one.
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Proof of First Lemma

Lemma 1: E(y1|x, y2 = 1) = x′
1β1 + γ1E(v2|x, y2 = 1)

Steps in the Proof

1. u1 is conditionally independent of x given v2

2. E(y1|x, v2) = x′1β1 + γ1v2

3. Relate unobserved E(y1|x, v2) to observed E(y1|x, y2 = 1).
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Step 1: u1 and x are conditionally independent given v2.

Assumption (b)
(u1, v2) are jointly independent of x.

Equivalently
f1,2|x(u1, v2|x) = f1,2(u1, v2), and f1|x(u1|x) = f1(u1), and f2|x(v2|x) = f2(v2)

Therefore

f1|2,x(u1|v2, x) =
f1,2|x(u1, v2|x)

f2|x(v2|x)
=

f1,2(u1, v2)

f2(v2)
= f1|2(u1|v2)

In Words
Conditioning on (v2, x) gives the same information about u1 as conditioning on v2 only.
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Step 2: E(y1|x, v2) = x′1β1 + γ1v2

E(y1|x, v2) = E(x′1β1 + u1|x, v2) (Substitute Outcome Eq.)

= x′1β1 +E(u1|x, v2) (x1 is a subset of x)

= x′1β1 +E(u1|v2) (apply result of Step 1)

= x′1β1 + γ1v2 (apply Assumption (d))
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Step 3: Relate unobserved E(y1|x, v2) to observed E(y1|x, y2 = 1).

E(y1|x, y2) = Ev2|(x,y2) [E (y1|x, y2, v2)] (Law of Iterated Expectations)

= Ev2|(x,y2) [E (y1|x, v2)] (Participation Eq: y2 = g(x, v2))

= E
[
x′1β1 + γ1v2|x, y2

]
(apply result of Step 2)

= x′1β1 + γ1E (v2|x, y2) (x1 is a subset of x)

Therefore
E (y1|x, y2 = 1) = x′1β1 + γ1E(v2|x, y2 = 1) X
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Note: Selection Bias Enters Through γ1

Assumption (d)
E(u1|v2) = γ1v2 allows dependence between errors in participation and outcome eqs.

Step 3
E(y1|x, y2 = 1) = x′1β1 + γ1E(v2|x, y2 = 1)

Therefore
If γ1 = 0 there is no selection bias: in this case E(y1|x, y2 = 1) = x′1β so regressing y1

on x1 for the subset of individuals with y2 = 1 identifies β1.
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Proof of Second Lemma

Lemma 2: E(v2|x, y2 = 1) = ϕ(x′δ2)/Φ(x′δ2)

Steps in the Proof

1. Determine the distribution of v2 given (x, y2 = 1)

2. Apply a result for truncated normal distributions.
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Step 1: Determine the distribution of v2 given (x, y2 = 1).
P(v2 ≤ t|x, y2 = 1) = P(v2 ≤ t|x, v2 > −x′δ2) (participation eq.)

=
P ({v2 ≤ t} ∩ {v2 > −x′δ2} |x)

P(v2 > −x′δ2|x)
(defn. of cond. prob.)

=
P {v2 ∈ (−x′δ2, t]}
P(v2 > −x′δ2)

(v2 and x are indep.)

=
P {v2 ∈ (c, t]}
P(v2 > c) (shorthand: c ≡ −x′δ2)

= P(v2 ≤ t|v2 > c) (defn. of cond. prob.)
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Step 2: Apply a result for truncated normal distributions.

Result of Step 1
P(v2 ≤ t|x, y2 = 1) = P(v2 ≤ t|v2 > c) where c ≡ −x′δ2.

Assumption (c)
v2 is a standard normal random variable

Combining

E(v2|x, y2 = 1) = E(v2|v2 > c) = ϕ(c)
1− Φ(c) (E[truncated normal])

=
ϕ(−x′δ2)

1− Φ(−x′δ2)
=

ϕ(x′δ2)

Φ(x′δ2)
(ϕ(−c) = ϕ(c), 1− Φ(c) = Φ(−c))
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The Expectation of a Truncated Normal

Lemma
If z ∼ N (0, 1) then for any constant c we have E[z|z > c] = ϕ(c)

1− Φ(c) .

CDF
P(z ≤ t|z > c) = P {z ∈ (c, t]}

P(z > c) = 1 {c ≤ t}
[
Φ(t)− Φ(c)

1− Φ(c)

]

Density
f (t|z > c) = d

dtP(z ≤ t|z > c) =
{

0, t ≤ c
ϕ(t)/ [1− Φ(c)] , t > c
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The Expectation of a Truncated Normal

E(z|z > c) =
∫ ∞

−∞
tf (t|z > c) dt =

1
1− Φ(c)

∫ ∞

c
tϕ(t) dt

=

[
1

1− Φ(c)

](
1√
2π

)∫ ∞

c
t exp

{
−t2/2

}
dt

=

[
1

1− Φ(c)

](
1√
2π

)[
− exp

{
−t2/2

}]∞
c

=

[
1

1− Φ(c)

](
exp

{
−c2/2

}
√

2π

)
=

ϕ(c)
1− Φ(c)
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