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Chapter 1

Maximum Likelihood Estimation
Under Mis-specification

In your introductory lectures on probability and statistics, you studied the method of
maximum likelihood estimation (MLE). As you may recall, MLE posits a distribu-
tion fθ for a random vector y in terms of an unknown parameter value θ and uses an
observed sample y1, . . . ,yN to estimate θ by maximizing the likelihood function L(θ)

or equivalently the log-likelihood function `(θ). Most introductory treatments of MLE
assume that fθ is correctly specified, in other words that each observation yi is in
fact a draw from this distribution. But what if this assumption is wrong and our model
is in fact mis-specified? In this chapter we examine the general theory for MLE under
mis-specification and apply it to a simple example.

1.1 Review: MLE for a Poisson Distribution

We’ll begin by introducing the running example for the chapter: MLE for the parameter
of a Poisson distribution. This material should be familiar from your lectures on intro-
ductory probability earlier in the academic year, but a little review never hurts! If you
are confident that you already understand this material, skip to the next section. We say
that y follows a Poisson distribution with parameter θ, written y ∼ Poisson(θ), if y
has probability mass function (pmf)

f(y; θ) =
e−θθy

y!
, y ∈ {0, 1, 2, . . . } . (1.1)

The Poisson distribution is a common model for count data, examples of which include the
number of patents a firm has obtained, or the number of people who live in a household.1

1To be clear, I am not claiming that the Poisson distribution is necessarily a good model for these
examples: merely that both are instances of count data.
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To verify that (1.1) is indeed a valid pmf, we need to check that f(y; θ) is strictly positive
for every value in the support set of y and that the pmf sums to one over this set. The
first requirement clearly holds for any y ∈ {0, 1, 2, . . . }. For the second,

∞∑
y=0

e−θθy

y!
= e−θ

∞∑
y=0

θy

y!
= e−θ

(
eθ
)
= 1

using the Taylor series ex =
∑∞

k=0 x
k/k!. If y ∼ Poisson(θ) then both the mean and

variance of y equal θ. For this reason, the parameter θ of a Poisson distribution must be
non-negative.2 To help refresh your memory on basic probability calculations, you will
prove the result for the variance on your first problem set.

Lemma 1.1. Suppose that y ∼ Poisson(θ). Then, E(y) = Var(y) = θ.

Proof of Lemma 1.1. Here I prove E(y) = θ only. To prove that Var(y) = θ, use a
similar argument to calculate E(y2) and then write Var(y) = E(y2)−E(y)2. By definition,
E(y) =

∑∞
y=0 yf(y; θ). But since the first term in this sum equals zero, we can write

E(y) =
∞∑
y=0

y
e−θθy

y!
=

∞∑
y=1

y
e−θθy

y!

Now, since y/y! = 1/(y − 1)!, pulling a factor of θ in front of the sum gives

∞∑
y=1

y
e−θθy

y!
= θ

∞∑
y=1

e−θθy−1

(y − 1)!
.

Finally, Re-indexing the sum to start at zero rather than one, it follows that

θ

∞∑
y=1

e−θθy−1

(y − 1)!
= θ

∞∑
y=0

e−θθy

y!
= θ

since
∑∞

y=0 e
−θθy/y! = 1 as shown in our discussion above.

Suppose we observe a random sample y1, y2, . . . , yN ∼ iid Poisson(θ) and wish to
estimate the unknown parameter θ. Because the data are iid, the sample likelihood
LN(θ) and log-likelihood `N(θ) are given by

LN(θ) ≡
N∏
i=1

e−θθyi

yi!
, `N(θ) =

N∑
i=1

[yi log(θ)− θ − log(yi!)] . (1.2)

To find the maximum likelihood estimator θ̂ we optimize either of these functions over θ,
the unknown parameter.3 In general it’s much easier to work with the log-likelihood, so

2If θ = 0, then we have a degenerate Poisson distribution with P(y = 0) = 1.
3Because log is a monotonic function, the solutions to both problems are the same.
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we define the solution to the maximum likelihood problem as

θ̂ ≡ argmax
θ∈[0,+∞)

`N(θ).

Differentiating the log-likelihood from (1.2),

d

dθ
`N(θ) =

N∑
i=1

d

dθ
[yi log(θ)− θ − log(yi!)] =

N∑
i=1

(yi
θ
− 1
)

(1.3)

d2

dθ2
`N(θ) =

N∑
i=1

d

dθ

(yi
θ
− 1
)
=

N∑
i=1

(
− yi
θ2

)
(1.4)

we see that `N(θ) is strictly concave.4 Thus, the first order condition identifies the unique
global maximum, in particular:

N∑
i=1

(
yi/θ̂ − 1

)
= 0 ⇐⇒ θ̂ =

1

N

N∑
i=1

yi = ȳ (1.5)

so the maximum likelihood estimator for θ turns out to be the sample mean ȳ. Given
that θ = E(y) this seems reasonable enough! Notice that, because ȳ ≥ 0 our MLE θ̂

automatically respects the constraint θ ∈ [0,+∞). We will return to this example and
the associated calculations below.

1.2 The Kullback-Leibler (KL) Divergence

Our goal in this chapter is to answer the following question: how can we interpret MLE if
our model is incorrect? For example, what if y1, . . . , yN do not really come from a Poisson
distribution, but we apply Poisson MLE nonetheless? Answering this question will require
us to think about models as approximations rather than reality. In this section we will
describe a way to quantify how well a parametric model f(y;θ) approximates po(y), the
unknown true density or pmf of a random vector y—the Kullback-Leibler divergence.

Definition 1.1 (Kullback Leibler Divergence). Let y be a RV with true density po(y)

and let fθ be a possibly mis-specified parametric model for y. The quantity

KL(po; fθ) ≡ E

[
log

{
po(y)

f(y;θ)

}]
=

∫
log

{
po(y)

f(y;θ)

}
po(y) dy

is called the Kullback-Leibler divergence from po to fθ. If y is discrete, the integral is
replaced with a sum and po is a pmf rather than a density.

4Remember that yi cannot be negative. Unless all observations yi are equal to zero, the second
derivative of the log likelihood function is strictly negative.
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Notice that the expectation in the definition of the KL divergence is taken with respect
to the true density or pmf po(y). To make this clearer, notice that we can express it as

KL(po; fθ) = E[h(y)] =

∫
h(y)po(y) dy, h(y) ≡ log

[
po(y)

f(y;θ)

]
.

In other words, the KL divergence is simply an expectation of a function h of the ran-
dom vector y. It just so happens that h involves f(y;θ) and po(y), which is perfectly
fine because both of these are themselves functions of y. The KL divergence has three
important properties. First, it is asymmetric:

KL(po; fθ) 6= KL(fθ; po).

This is apparent from Definition 1.1: we end up with a totally different integral if we
interchange the roles of po and fθ.5 Second, the KL divergence is non-negative and equals
zero if and only if the model and the true distribution are identical.

Lemma 1.2. KL(po; fθ) ≥ 0 with equality if and only if po = fθ.

Proof of Lemma 1.2. This proof relies on Jensen’s Inequality: if ϕ is a convex function
then ϕ(E[y]) ≤ E[ϕ(y)], with equality if and only if ϕ is linear or y is constant. Now,
since log is concave, (− log) is convex. It follows that

E
[
log

{
po(y)

f(y;θ)

}]
= E

[
− log

{
f(y;θ)

po(y)

}]
≥ − log

{
E
[
f(y;θ)

po(y)

]}
= − log

{∫
f(y;θ)

po(y)
· po(y) dy

}
= − log

{∫
f(y;θ) dy

}
= − log(1) = 0.

As seen from 1.2, the KL divergence cannot be negative. In fact it can be infinite.
The integral in 1.1 is only taken over values in the support set of y, i.e. values for which
po(y) 6= 0. If fθ equals zero when evaluated at one of these values, the KL divergence is
infinitely large. In other words: if our model fθ rules out values of y that can actually
occur in reality, the KL divergence is no longer well-defined. This problem is easy to
avoid. We simply need to ensure that our model has the same support set as the real
data. So if y is a count that could possibly take on any value in {0, 1, 2, . . . }, our model
should not rule out any of these values. With this caveat out of the way, we will assume
throughout the rest of our discussion that the KL divergence is finite.

The third important property of the KL divergence concerns its relationship to maxi-
5The reason that we call it the KL divergence rather than the KL distance is because a distance

function, aka a metric, must be symmetric, whereas the KL divergence is not.
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mum likelihood estimation. Since the log of a ratio equals the difference of the logarithms,

E

[
log

{
po(y)

f(y;θ)

}]
= E [log po(y)]−E [log f(y;θ)] . (1.6)

The first term in (1.6), E[log po(y)] does not depend on f or θ. Regardless of which para-
metric model we consider, this term is fixed. The second term in (1.6), E[log f(y;θ)], is
called the expected log-likelihood. This term depends both on the choice of parametric
model f and the value of the parameter vector θ. Because (1.6) takes the form

KL = Constant −E[log-likelihood]

to minimize the KL divergence, it suffices to maximize the expected log-likelihood.6 Thus
the value of θ that maximizes the expected log-likelihood is the value of θ that minimizes
the KL divergence. We call this the pseudo-true parameter value, denoted θo.

Definition 1.2 (Pseudo-true Parameter Value). Let po(y) be the true density or pmf of
a random vector y and fθ, θ ∈ Θ, be a possibly mis-specified parametric model for y.
Then we call θo defined by

θo ≡ argmin
θ∈Θ

KL(po, fθ) = argmax
θ∈Θ

E[log f(y;θ)]

the pseudo-true parameter value under the model fθ.

The intuition behind the idea of a pseudo-true parameter values is as follows. If our
model were correctly specified, then the value of θ that maximized the expected log-
likelihood would be the true value of θ: the parameter value of the distribution from
which the data were actually drawn. When our model is mis-specified, however, there is
no choice of θ in the parameter space Θ such that fθ coincides with the true distribution.
There is, however, a choice of θ that makes our model fθ as close as possible to the truth,
po, where we define “closeness” as minimum KL divergence. We call this parameter value
the pseudo-true value.

The best way to understand this is with an example. Suppose that y is a dis-
crete RV with support set {0, 1, 2} and probability mass function po where po(0) = 2/5,
po(1) = 1/5, and po(2) = 2/5. Since a Poisson random variable can take on any value
in {0, 1, 2, . . . } we can tell immediately that y does not follow a Poisson distribution.7

Suppose that we nevertheless choose as our parametric model for y a Poisson(θ) distri-
bution. Our question is: which choice of θ makes the Poisson(θ) distribution as close as
possible to the true pmf po of y? To really drive home the point about KL divergence

6A very poor choice of the parameter θ will result in a very large negative value for the expected
log-likelihood, and hence a very large positive value for the KL divergence.

7Here the support set of our model is larger than the true support set of y. This is fine: the problem
of an infinite KL divergence can only arise when our model excludes part of the true support set of y.
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and expected log-likelihood, we will carry out this calculation two different ways: first by
working out the full expression for the KL divergence, and then more simply by directly
maximizing the expected log-likelihood.

We can calculate the KL divergence for this example as follows. For E[log po(y)],

E[log po(y)] =
∑
all y

log [po(y)] po(y) = log

(
2

5

)
· 2
5
+ log

(
1

5

)
· 1
5
+ log

(
2

5

)
· 2
5

which, as expected, does not depend on the parameter θ. For E[f(y; θ)],

E[log f(y; θ)] =
∑
all y

log

[
e−θθy

y!

]
po(y) = log

(
e−θ
)
· 2
5
+ log

(
e−θθ

)
· 1
5
+ log

(
e−θθ2

2

)
· 2
5

= −
[
θ − log(θ) + log(2) · 2

5

]
which, as expected, does depend on θ. Combining these, we find that the KL divergence
from the true pmf po to our Poisson(θ) model is given by

KL(po, fθ) = E[log po(y)]−E[log f(y; θ)] = (Constant) + θ − log(θ).

This is a strictly convex function of θ, so the first-order condition 1−1/θ = 0 is necessary
and sufficient for a global minimum. Hence we obtain θo = 1. The Poisson distribution
that best approximates po, in the sense of minimizing the KL divergence, is a Poisson(1).

At the risk of beating a dead horse, let’s try this calculation again. This time, rather
than minimizing the KL divergence, we’ll maximize the expected log-likelihood, using the
equivalence from Definition 1.2. The expected log-likelihood is given by

E[log f(y; θ)] = E[y log(θ)− θ − log(y!)] = log(θ)E[y]− θ −E[log(y!)]

but since E[log(y!)] does not depend on θ, we can write this as

E[log f(y; θ)] = (Constant) + log(θ)E[y]− θ.

Since E[y] is non-negative, this is a strictly concave function of θ and hence the first-
order condition E[y]/θ − 1 = 0 is necessary and sufficient for a global maximum. Thus
we obtain θo = E[y]. For the specified po we have: E[y] = 0 · 1

5
+ 1 · 2

5
+ 2 · 2

5
= 1 and

thus the two approaches give the same result. The advantage of the second approach
over the first is that it shows us that no matter what the true distribution po actually is,
the pseudo-true parameter value under a Poisson model is θo = E[y].
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1.3 Asymptotic Theory for Mis-specified MLE

As shown in section 1.1, under an iid Poisson(θ) model, the MLE is θ̂ = ȳ. And as shown
in section 1.2, when this model is mis-specified, the value of θ that minimizes the KL
divergence is θo = E[y], the population mean of y.8 Now, since y1, . . . , yN are iid draws
from a distribution with finite mean and variance, we can apply the weak law of large
numbers and the central limit theorem to obtain

ȳ →p E[y], and
√
N(ȳ −E[y]) →d N (0,Var(y)) (1.7)

or writing the same thing using more suggestive notation,

θ̂ →p θo, and
√
N(θ̂ − θo) →d N (0,Var(y)).

Crucially, neither of these asymptotic results relies upon the assumption that yi is actually
a draw from a Poisson distribution! Indeed, they continue to hold regardless of the true
distribution po from which the yi were drawn, subject to mild regularity conditions.9

So, at least in this example, the maximum likelihood estimator θ̂ turns out to be a
consistent and asymptotically normal estimator of θo, the pseudo-true parameter value
defined in Definition 1.2. It turns out that this is not a coincidence. Under mild regularity
conditions, maximum likelihood estimators are consistent for the pseudo-true parameter
value, and asymptotically normal.

Theorem 1.1. Suppose that y1, . . . ,yN ∼ iid po and let θ̂ denote the MLE for θ under
the possibly mis-specified model f(y;θ). Then, under mild regularity conditions:

(i) θ̂ is consistent for the pseudo-true parameter value θo, defined as the minimizer of
KL(po, fθ) over the parameter space Θ.

(ii)
√
N(θ̂ − θo) →d N (0,J−1KJ−1)

where we define J ≡ −E
[
∂2 log f(y;θo)

∂θ∂θ′

]
and K ≡ Var

[
∂ log f(y;θo)

∂θ

]
.

Theorem 1.1 provides an interpretation of MLE when we acknowledge that our models
are only an approximation of reality. It also provides a way of computing standard errors
that are robust to mis-specification of our model. In particular, let

Ĵ ≡ − 1

N

N∑
i=1

∂2 log f(yi; θ̂)

∂θ∂θ′ , K̂ ≡ 1

N

N∑
i=1

[
∂ log f(yi; θ̂)

∂θ

][
∂ log f(yi; θ̂)

∂θ

]′
. (1.8)

8It bears repeating that all expectations in this chapter are taken with respect to the true distribution
po, e.g. E[y] =

∑
all y y po(y) for a discrete RV.

9There are two conditions. First, we require that the support of y is a subset of the support set
of a Poisson RV, so that the KL divergence is finite. Without this condition, the pseudo-true value is
undefined. Second, to apply the law of large numbers and central limit theorem, we require that the first
and second moments of y exist and are finite.
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Under regularity conditions, the robust asymptotic variance matrix estimator
Ĵ−1K̂Ĵ−1 is consistent for J−1KJ−1. But isn’t K̂ from (1.8) missing a term? The sam-
ple variance of x is given by

(
N−1

∑N
i=1 xix

′
i

)
− (x̄x̄′) where x̄ = N−1

∑N
i=1 xi but the

formula for K̂ doesn’t contain the “x̄x̄′” component. This isn’t a mistake: since θ̂ is
the solution to the MLE first-order condition, the missing term is precisely equal to zero.
Theorem 1.1 combined with the robust asymptotic variance matrix estimator justifies the
approximation

θ̂ ≈ N (θo, Ĵ
−1K̂Ĵ−1/N)

from which we can construct tests and confidence intervals for θo. If, miraculously, our
model turns out to be correctly specified, we obtain the following corollary to Theorem 1.1.

Corollary 1.1. If po(y) = f(y;θo), then under the conditions of Theorem 1.1,

(i) θ̂ is consistent for θo, and

(ii)
√
N(θ̂ − θo) →d N (0,J−1)

where J is as defined in Theorem 1.1.

You are likely to have encountered some form of Corollary 1.1 in your earlier exposure
to MLE. Its proof relies on two lemmas. First, by Lemma 1.2, if po(y) = f(y;θo)

then KL(po; fθ) equals zero at θ = θo. In other words, under correct specification,
the pseudo-true parameter value is simply the true parameter value. Second, by the
information matrix equality, in a correctly specified maximum likelihood model we
have K = J. A proof of this result appears in section 1.4 below. Using this fact, we
obtain J−1KJ−1 = J−1. Since Ĵ−1, from (1.8), is a consistent estimator of J−1, under
correct specification we can carry out inference using Ĵ−1 in place of the more complicated
robust asymptotic variance matrix estimator.

To clarify the distinction between Theorem 1.1 and Corollary 1.1, we will return one
final time to the Poisson MLE example from above. Recall that θo = E[y], θ̂ = ȳ, and

log f(y; θ) = y log(θ)− θ − log(y!),
d

dθ
log f(y; θ) =

y

θ
− 1,

d2

dθ2
log f(y; θ) = − y

θ2
.

Substituting these into the definitions of J and K from Theorem 1.1, we obtain

J = −E
[
d2

dθ2
log f(y; θo)

]
= −E[−y/θ2o] = 1/E[y]

K = Var
[
d

dθ
log f(y; θo)

]
= Var [y/θo − 1] = Var(y)/E[y]2

both of which are scalars rather than matrices since θ is one-dimensional. Similarly,
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specializing the estimators Ĵ and K̂ from (1.8) to the Poisson MLE example, we obtain

Ĵ = − 1

N

N∑
i=1

d2

dθ2
log f(yi; θ̂) = − 1

N

N∑
i=1

(
−y/θ̂2

)
= 1/ȳ

K̂ =
1

N

N∑
i=1

[
d

dθ
log f(yi; θ̂)

]2
=

1

N

N∑
i=1

[
y/θ̂ − 1

]2
= s2y/(ȳ)

2

where s2y ≡ N−1
∑N

i=1(yi − ȳ)2 and ȳ ≡ N−1
∑n

i=1 yi. Now consider two cases. Suppose
first that the Poisson models is correct. Then, since

J−1 = (1/E[y])−1 = E[y]

we obtain
√
N(θ̂ − θo) →d N (0,E[y]) justifying the approximation θ̂ ≈ N (θo, ȳ/N).

Recall from above that the mean of a Poisson random variable equals the variance, so
this result makes perfect sense if our model is correctly specified. Now suppose that the
Poisson model is incorrect. Since

J−1KJ−1 =

(
1

E[y]

)−1 [Var(y)
E[y]2

](
1

E[y]

)−1

= Var(y)

we obtain
√
N(θ̂ − θo) →d N (0,Var(y)) justifying the approximation θ̂ ≈ N (θo, s

2
y/N).

This is exactly the same result that we obtained by proceeding “from first principles”
in (1.7), i.e. without appealing to Theorem 1.1. If the Poisson model is incorrect, then
there is no reason to suppose that Var(y) = E(y). If we make this assumption when it is
false, our tests and confidence intervals will be incorrect. The robust asymptotic variance
calculation avoids this problem: regardless of whether the model is correct or incorrect,
it gives the right answer.

An interesting feature of the Poisson MLE example is that, regardless of whether the
model is correct or incorrect, we are fundamentally estimating the same parameter : θo is
the mean of y regardless of whether y is a Poisson(θo) random variable or not. We will
see a very similar phenomenon emerge in our next chapter, when we extend the Poisson
MLE example to consider Poisson regression: a regression model for count data.

1.4 Appendix: The Information Matrix Equality

Lemma 1.3 (Information Matrix Equality). If po(y) = f(y;θo), then K = J where

J ≡ −E
[
∂2 log f(y;θo)

∂θ∂θ′

]
, K ≡ Var

[
∂ log f(y;θo)

∂θ

]
.

Proof of Lemma 1.3. This proof assumes that y is a continuous random vector. For
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a discrete random vector, simply replace the integrals in the final step with sums.
We begin by finding a simpler expression for the matrix K. Using the fact that

Var(x) = E[xx′]−E[x]E[x]′, we can write

K = E

[{
∂ log f(y;θo)

∂θ

}{
∂ log f(y;θo)

∂θ

}′]
−E

[
∂ log f(y;θo)

∂θ

]
E

[
∂ log f(y;θo)

∂θ

]′
but since θo maximizes E [log f(y;θ)],

E

[
∂ log f(y;θo)

∂θ

]
=

∂

∂θ
E [log f(y;θo)] = 0

so it suffices to show that

−E
[
∂2 log f(y;θo)

∂θ∂θ′

]
= E

[{
∂ log f(y;θo)

∂θ

}{
∂ log f(y;θo)

∂θ

}′]
. (1.9)

The remainder of the proof is devoted to establishing (1.9). We do this element-by-
element, showing the equality of the (i, j) elements of the two matrices. By the chain
and product rules, along with some algebra, we see that

∂2

∂θi∂θj
log f(y;θ) =

∂

∂θi

[
∂

∂θj
log f(y;θ)

]
=

∂

∂θi

[
1

f(y;θ)
· ∂

∂θj
f(y;θ)

]
=

[
− 1

f 2(y;θ)
· ∂

∂θi
f(y;θ)

] [
∂

∂θj
f(y;θ)

]
+

1

f(y;θ)
· ∂2

∂θi∂θj
f(y;θ)

= −
[

1

f(y;θ)
· ∂

∂θi
f(y;θ)

] [
1

f(y;θ)
· ∂

∂θj
f(y;θ)

]
+

1

f(y;θ)
· ∂2

∂θi∂θj
f(y;θ)

= − ∂

∂θi
log f(y;θ)

∂

∂θj
log f(y;θ) +

1

f(y;θ)
· ∂2

∂θi∂θj
f(y;θ).

Multiplying this result by −1, gives

∂2

∂θi∂θj
log f(y;θ) = − ∂

∂θi
log f(y;θ)

∂

∂θj
log f(y;θ) +

1

f(y;θ)
· ∂2

∂θi∂θj
f(y;θ).

Evaluating the result at θo, and taking expectations of both sides of the equality,

−E
[

∂2

∂θi∂θj
log f(y;θo)

]
= E

[
∂

∂θi
log f(y;θo)

∂

∂θj
log f(y;θo)

]
−E

[
1

f(y;θo)
· ∂2

∂θi∂θj
f(y;θo)

]
.

Accordingly, it remains only to show that

E

[
1

f(y;θo)
· ∂2

∂θi∂θj
f(y;θo)

]
= 0.

We have not yet used the assumption that the model is correctly specified. Now is the

12



time to do so. Since, po(y) = f(y;θo), we can re-write the expectation as an integral

E

[
1

f(y;θo)
· ∂2

∂θi∂θj
f(y;θo)

]
≡
∫
Y

[
1

f(y;θo)
· ∂2

∂θi∂θj
f(y;θo)

]
po(y) dy

=

∫
Y

[
1

f(y;θo)
· ∂2

∂θi∂θj
f(y;θo)

]
f(y;θo) dy

=

∫
Y

∂2

∂θi∂θj
f(y;θo) dy

=
∂2

∂θi∂θj

∫
Y
f(y;θo) dy.

where Y denotes the support set of y. But since f(y;θo) its integral over Y with respect
to y equals one. The result follows because the second cross-partial derivative of 1 is
indeed zero!
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Chapter 2

Poisson Regression

In this chapter we begin by expanding the discussion from chapter 1 to consider condi-
tional maximum likelihood estimation based on a model of the form f(y|x;θ) where x is
a vector of observed covariates. This extension is important because it allows us to study
regression models under mis-specification. We apply these results to a popular model for
count data: the Poisson regression model.

2.1 How to Predict Count Data?

Suppose our goal is to build a model that predicts the number of children a woman has, y,
using a set of covariates x ≡{years of schooling, age, married, etc.}. In this example, y is
a count variable, i.e. y ∈ {0, 1, 2, . . . }. How could we go about making our predictions?

Before discussing what makes count data special, let’s think about this problem in
general. Suppose we want to predict y using x. What function ϕ(x) should we use to
construct our prediction ŷ of the outcome y? To answer this question, we first need
to be clear about what counts as a “good” prediction and what counts as a bad one.
The most common way of doing this is by specifying a loss function L (y, ŷ) that tells
us the loss we incur from predicting ŷ when the truth is y.1 There are many possible
loss functions that we could choose. Ideally we would choose one that’s specific to the
application we have in mind. For example, if the head of Ocado wants to predict demand
for home grocery delivery, the loss function should weigh the costs of having idle trucks
and drivers against the opposing costs of being unable to respond to an unexpected surge
in demand. Without a particular application in mind, we need to choose something,
and a very common choice is squared error loss, namely L(y, ŷ) = (y − ŷ)2. Given
a choice of loss function, we can choose a predictor to minimize expected loss.2 The
function ϕ that minimizes expected squared error loss, E

[
{y − ϕ(x)}2

]
, is called the

1A loss function is simply the negative of a utility function: L (y, ŷ) = −U(y, ŷ). In words: a utility
function tells us the gain from predicting ŷ when the truth is y.

2This is just like maximizing expected utility, but with the sign reversed.
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minimum mean squared error (MSE) predictor. As you may recall from your lectures
on probability and statistics, this function turns out to be the conditional expectation of
y given x, as shown in the following lemma.

Lemma 2.1 (Minimum MSE Predictor). The function µ(x) ≡ E(y|x) minimizes the
mean squared error E

[
{y − ϕ(x)}2

]
over all possible predictors ϕ(·).

Proof of Lemma 2.1. At first glance, this appears to be a very challenging problem
because ϕ is a function rather than a scalar or a vector. But in fact, there’s a simple way
to prove this result without using any advanced mathematics. First we use the oldest
trick in the book. To obtain an expression that contains µ(x) ≡ E(y|x), we add and
subtract this quantity, yielding:

E
[
{y − ϕ(x)}2

]
= E

[{(
y − µ(x)

)
−
(
ϕ(x)− µ(x)

)}2]
= E

[
{y − µ(x)}2

]
− 2E [{y − µ(x)} {ϕ(x)− µ(x)}] +E

[
{ϕ(x)− µ(x)}2

]
.

The second term in the preceding expression is a bit unwieldy. Let’s see if we can simplify
it. By iterated expectations,

Ex [{y − µ(x)} {ϕ(x)− µ(x)}] = E

(
E [{y − µ(x)} {ϕ(x)− µ(x)} |x]

)
= E

(
[ϕ(x)− µ(x)] [E(y|x)− µ(x)]

)
= 0

since µ(x) ≡ E(y|x). Because this middle term turns out to be zero, we are left with
only the first and third terms from our expression for MSE from above, namely

E
[
{y − ϕ(x)}2

]
= E

[
{y − µ(x)}2

]
+E

[
{ϕ(x)− µ(x)}2

]
.

Consider first E
[
{y − µ(x)}2

]
. Because this term does not involve ϕ, it is a constant

from the perspective of our optimization problem and hence can be ignored. All that
remains is to minimize E

[
{ϕ(x)− µ(x)}2

]
over ϕ. Notice that if we set ϕ(x) = µ(x),

this term becomes exactly zero. This is the smallest possible value we can achieve, since
E[(something)2] cannot be negative. Therefore, µ(x) is the unique solution to our original
optimization problem.

The minimum mean squared error predictor of y is E(y|x), but in practice it is usually
very difficult to estimate this function. In principle, it depends on x in a completely
arbitrary way. If x contains more than a small number of regressors, we would need
a truly gargantuan dataset to be able to learn the conditional mean function.3 The

3Here I allude to what is called the curse of dimensionality in the machine learning and non-
parametric econometrics literatures.
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typical response to this difficulty is to restrict the set of functions ϕ that we consider
for predicting y. For example, we might ask: what is the best function of the form x′θ

for predicting y from x? Under squared error loss, the answer to this question is called
the minimum MSE linear predictor. As you have likely seen in your econometrics
lectures from earlier in the year, the solution to this constrained problem is the linear
regression predictor.

Lemma 2.2 (Minimum MSE Linear Predictor). Provided that E[xx′] is invertible, the
parameter vector that uniquely minimizes E

[
(y − x′θ)2

]
is β ≡ E [xx′]−1

E[xy].

Proof. Recall the following facts from matrix differentiation:

∂(a′z)

∂z
= a,

∂(z′Az)

∂z
= (A+A′)z.

Taking the first order condition and re-arranging,

−2E [xy] + 2E[xx′]β = 0 =⇒ β = E [xx′]
−1
E [xy] .

If the conditional mean function E(y|x) is a linear function, then the solutions from
Lemmas 2.1 and 2.1 coincide. While it is unlikely that the conditional mean function is
exactly linear, it may be at least approximately linear, E(y|x) ≈ x′β, in which case linear
regression should provide reasonably accurate predictions.

So what’s special about count data? If y ∈ {0, 1, 2, . . . }, then we know in advance that
we should never predict a negative value. This presents a problem for linear regression:
depending on the value of x that we observe, x′β could be negative. How could we
avoid this problem? One idea would be to consider a log-linear model of the form
log(y) = x′β + ε, i.e. to carry out linear regression with y on the log scale. This solves
the problem of negative predictions since it is perfectly fine for log(y) to be negative. At
the same time, it introduces a new one: if y = 0, which is entirely possible for a count
variable, then log(y) = −∞. To avoid these difficulties, we will consider parametric
models for count data that are nonlinear in parameters. In particular, we will assume
that E(y|x) = m(x;β) where m is a known function of and unknown parameter vector
β, and m cannot take on negative values. This means that m cannot be a linear function
of β.4 In the discussion that follows, we will focus on a choice of m that is common in
practice, namely m(x;β) = exp (x′β). As required, this is strictly positive and hence
nonlinear in parameters. Making appropriate changes to the notation, everything that
we discuss below goes through for alternative choices of m.

Assumption 2.1. E(y|x) = exp(x′βo)

4We say that a function m is linear if and only if m(β1+β2) = m(β1)+m(β2) and m(aβ1) = am(β1)
for any vectors β1,β2 and any scalar a. Suppose that m(β) > 0. Then, taking a = −1, m(−β) must be
negative. Thus, a function that only takes on positive values cannot be linear.

16



So how can we estimate βo? Under Assumption 2.1, βo minimizesE
[
{yi − exp(x′

iβ)}
2]

over all parameter vectors β by Lemma 2.1. Converting this to an analogous problem for
our sample dataset, one idea might be to use the nonlinear least squares estimator

β̂NLLS ≡ argmin
β

N∑
i=1

{yi − exp (x′
iβ)}

2
.

Another approach is Poisson regression, in which β̂ is defined as the conditional
ML estimator for βo under the model yi|xi ∼ independent Poisson

(
exp(x′

iβo)
)
. While

either approach is reasonable, we will mainly concern ourselves with Poisson regression
in this chapter.5 Before beginning our discussion of Poisson regression, we explain how
the results on misspecified maximum likelihood estimation can be extended to models
that condition on covariates x.

2.2 Conditional Maximum Likelihood Estimation

In chapter 1, we considered models of the form f(y;θ) for the unconditional distribution
of a random vector y in terms of an unknown parameter vector θ. If we were willing to
specify a model of the form f(y,x;θ), we could immediately apply our earlier results to
study Poisson regression by taking “y” to be the vector (y,x). Notice, however, that this
would require us to specify a model for the joint distribution of (y,x). By the definition
of a conditional density/pmf,

f(y,x;θ) = f(y|x;θ)f(x;θ).

Thus, modeling (y,x) jointly would require us to model the marginal distribution of the
covariates x. In regression applications, however, it is typically much more natural to
model the conditional distribution of y given x: we’re not interested in the marginal
distribution of x and coming up with a good model for it could be challenging. In
conditional MLE, we ignore the marginal distribution of x, and specify a parametric
model f(y|x;θ) for the unknown true conditional distribution po(y|x). Given a sample
of iid observations {xi,yi}Ni=1, the conditional maximum likelihood estimator is given by

θ̂ ≡ argmax
θ∈Θ

1

N

N∑
i=1

log f(yi|xi;θ).

In the conditional MLE case, the pseudo-true parameter value is

θo ≡ argmax
θ∈Θ

E [log f(yi|xi;θ)] (2.1)

5The chapter concludes with some further thoughts on the relative merits of the NLLS approach.
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where the expectation is taken over the joint distribution po(x,y) of (x,y). The following
are conditional MLE analogues of Theorem 1.1 and Corollary 1.1 from chapter 1.

Theorem 2.1. Suppose that {xi,yi}Ni=1 ∼ iid po and let θ̂ denote the conditional MLE
for θ under the possibly mis-specified model f(y|x;θ). Under mild regularity conditions:

(i) θ̂ is consistent for the pseudo-true parameter value θo, defined as the maximizer of
the expected log likelihood E [log f(y|x,θ)] over the parameter space Θ, and

(ii)
√
N(θ̂ − θo) →d N (0,J−1KJ−1)

where we define

J ≡ −E
[
∂2 log f(y|x,θo)

∂θ∂θ′

]
, K ≡ Var

[
∂ log f(y|x,θo)

∂θ

]
and all expectations are taken with respect to the true joint distribution po(x,y) of (xi,yi).

Corollary 2.1. Suppose that f(y|x;θo) is the true conditional distribution of yi|xi. Then,
under the conditions of Theorem 2.1

(i) θ̂ is consistent for θo, and

(ii)
√
N(θ̂ − θo) →d N (0,J−1)

where J is as defined in Theorem 2.1.

Theorem 2.1 and Corollary 2.1 are a bit more difficult to understand than their uncon-
ditional counterparts from chapter 1, so let’s take them apart. By iterated expectations,

E [log f(y|x;θ)] = Ex {E [log f(y|x;θ)|x]} . (2.2)

The outer expectation in (2.2) is taken with respect to the marginal distribution of x,
while the inner expectation is taken with respect to the true conditional distribution of
y given x, namely po(y|x). Thus, we can write

E[log f(y|x;θ)|x] =
∫

log f(y|x;θ)po(y|x) dy ≡ h(x;θ) (2.3)

introducing the shorthand h(x;θ) to emphasize the point that the inner expectation is a
function of x and θ. Using (2.2) and (2.3), we can re-express the pseudo-true parameter
value defined in (2.1) as

θo = argmax
θ∈Θ

Ex [h(x;θ)] .

This is a slightly less intimidating way of writing the optimization problem. How could
we go about solving it? To keep things simple, suppose that our problem is sufficiently
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well-behaved that the first-order condition identifies a unique global maximum, and we
can exchange expectation and differentiation. Then θo satisfies

∂

∂θ
Ex [h(x;θo)] = Ex

[
∂

∂θ
h(x;θo)

]
= 0.

In words, θo makes the partial derivatives of h(x;θ) with respect to θ average out to
zero over the distribution of x. For a particular realization x of the random vector
x, we may very well have ∂

∂θj
h(x;θo) 6= 0. Any realizations at which this derivative

is positive, however, are counterbalanced by other realizations at which it is negative.
When realizations are weighted by their probabilities, the average derivative equals zero.
Here’s another way of thinking about it. The maximizer of h(x;θ) with respect to θ

may well depend on the value of x at which we evaluate h. But we can’t use a different
value of θ for every realization x of x: we have been asked to find a single value of the
parameter vector to solve (2.1). This means we have to choose a parameter vector that
works well on average across all the different “sub-problems” defined by realizations of
x, even though it may not be the optimal choice for any them.

But what exactly are these sub-problems? Returning to the definition of h from (2.3),
we see that they are instances of the unconditional maximum likelihood problem from
chapter 1. For any fixed realization x of x, log f(y|x = x;θ) is a possibly mis-specified
parametric model for y, and po(y|x = x) is the true distribution. This shows us that the
pseudo-true parameter value from (2.1) is the value of θ that minimizes the KL divergence
from po(y|x = x) to f(y|x = x;θ) on average across all realizations of x.6 Now, suppose
that our model is correctly specified, that is f(y|x;θ) = po(y|x). For a given realization
of x, what is the parameter value that minimizes the KL divergence from po(y|x = x)

to f(y|x = x;θ)? Again, for a given value of x, we’re back to the setting we studied in
chapter 1. As shown in Lemma 1.2, the smallest possible value that the KL divergence
can take is zero, and this value is attained when the model and true distribution are
identical. It follows that, under correct specification, θo is the solution to all of the sub-
problems. To put it another way, under correct specification we have ∂

∂θ
h(x;θo) = 0 not

just on average, but for every value of x. Thus, for conditional maximum likelihood, the
pseudo-true parameter equals the true parameter under correct specification, just as it
did for unconditional maximum likelihood in chapter 1 above.

6Recall that minimizing the KL divergence is equivalent to maximizing the expected log-likelihood:
see section 1.2.
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2.3 Poisson Regression: A Model for Count Data

The Poisson regression model posits that

yi|xi ∼ independent Poisson
(
exp {x′

iβ}
)
, i = 1, . . . , N (2.4)

where β is a vector of unknown parameters.7 Using our results for the Poisson dis-
tribution from section 1.1, (2.4) implies that E[yi|xi] = exp(x′

iβ), which is precisely
Assumption 2.1. We will maintain this assumption throughout. We will not, however,
assume that the true conditional distribution of yi|xi is Poisson. Among other things,
doing so would require us to assume that Var(yi|xi) = exp(x′

iβ). This is a very unrealistic
assumption in most applications, as we will discuss further below. Thus, while maintain-
ing Assumption 2.1, we will treat the Poisson regression model as a possibly mis-specified
maximum likelihood model, following the theory from section 2.2.

Substituting exp(xiβ) for θ in (1.1), the log-likelihood for a single observation from
the Poisson regression model is given by

`i(β) ≡ log f(yi|xi,β) = yi(x
′
iβ)− exp(x′

iβ)− log (yi!) . (2.5)

Because we refer to it so frequently below, both in this chapter and those that follows,
it is helpful to have a convenient name and notation for the vector of partial derivatives
of `i(β) with respect to β. We call it the score vector, denoted si(β). Differentiating
(2.5), the score vector for the Poisson regression model is given by

si(β) ≡
∂`i(β)

∂β
= xi [yi − exp (x′

iβ)] = xiui(β) (2.6)

where we define the Poisson regression residual ui(β) ≡ yi − exp(x′
iβ). It will similarly

be helpful to have a convenient name and notation for the matrix of second derivatives
of `i(β). We call this the Hessian matrix, denoted Hi(β). Differentiating (2.6),

Hi(β) ≡
∂si(β)

∂β′ = − exp (x′
iβ)xix

′
i. (2.7)

By definition, the conditional MLE for β under (2.4) is given by

β̂ ≡ argmax
β∈RJ

`N(β) = argmax
β∈RJ

1

N

N∑
i=1

[yi(x
′
iβ)− exp(x′

iβ)− log (yi!)] .

7Throughout this chapter, we maintain Assumption 2.1. As pointed out above, however, we could
replace exp(x′β) with any known parametric function m(x;β) of β that is strictly positive. Subject to
minor changes of notation, the key results from this section continue to apply.
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By (2.6) and (2.7), however, notice that

∂`N(β)

∂β∂β′ =
1

N

N∑
i=1

∂`i(β)

∂β∂β′ =
1

N

N∑
i=1

Hi(β) = −

[
1

N

N∑
i=1

exp(x′
iβ)xix

′
i

]
.

Since the expression on the right hand side is a negative semi-definite matrix regardless
of the value of β, it follows that the sample log-likelihood for a Poisson regression model
is a concave function.8 Because any local maximum of a concave function is also a global
maximum, the MLE for a Poisson regression model satisfies the first order condition

1

N

N∑
i=1

xi

[
yi − exp

(
x′
iβ̂
)]

=
1

N

N∑
i=1

xiui(β̂) = 0.

Although no closed-form solution exists, the concavity of the log-likelihood makes it easy
to compute β̂ numerically, e.g. by using a variant of the Newton-Raphson algorithm.

2.4 Partial Effects in the Poisson Regression Model

For continuous xj, we call ∂
∂xj
E(y|x) the partial effect of xj on the conditional mean

function.9 In a linear model, i.e. E(y|x) = x′β, the partial effect of xj is simply βj. In
nonlinear models, however, partial effects typically vary with x. Under Assumption 2.1,
for example, we have

∂

∂xj

E(y|x) = ∂

∂xj

exp (x′β) = exp (x′β) βj.

Since exp(·) > 0, the sign of the partial effect of xj is completely determined by that of βj.
The magnitude, however, depends on the value of x at which we evaluate the derivative.
In contrast, relative effects—ratios of partial effects—do not depend on x, since

∂
∂xj
E(y|x)

∂
∂xk
E(y|x)

=
exp (x′β) βj

exp (x′β) βk

=
βj

βk

for this model. When partial effects vary with x, a reasonable way to summarize them
is by averaging over the distribution of x in the population. This gives rise to what is
called an average partial effect or APE for short. For our Poisson regression model

8To see why, note that we can write the second derivative matrix of `N as −
∑N

i=1 viv
′
i by defining

vi ≡ xi exp(x
′
iβ/2)/

√
N . Since each of the matrices viv

′
i is positive semi-definite, so is their sum.

Multiplying by −1 converts the result to a negative semi-definite matrix.
9For discrete xj , the partial effect is the difference of E(y|x) at two different values of xj .

21



with an exponential conditional mean function, the APE is

APE = E

[
∂

∂xj

exp (x′
iβ)

]
= E [exp (x′

iβ)] βj.

To estimate partial effects and average partial effects, we simply substitute our maximum
likelihood estimate β̂ for the unknown parameter vector β, yielding exp(x′

iβ̂)β̂j as an
estimated partial effect evaluated at xi and

ÂPE =

[
1

N

N∑
i=1

exp
(
x′
iβ̂
)]

β̂j

as an estimated average partial effect. On the problem set, you’ll show that for Poisson
regression model the estimated APE in fact equals ȳβ̂j. This implies that multiplying
Poisson coefficients by ȳ puts them roughly on the same scale as OLS coefficients esti-
mated from the same data.

2.5 What if the Poisson Assumption Fails?

As explained in section 2.3, we maintain Assumption 2.1 throughout this chapter but treat
the Poisson regression model as a possibly mis-specified conditional likelihood model.
So what is the pseudo-true parameter value for Poisson regression? In other words,
what value of β maximizes the expected log-likelihood E [`i(β)]? By (2.5) and iterated
expectations,

E[`i(β)] = Ex {E [`i(β)|xi]} = Ex {E [yi(x
′
iβ)− exp(x′

iβ)− log (yi!) |xi]} .

Simplifying the inner expectation, we see that,

E [`i(β)|xi] = (x′
iβ)E [yi|xi]− exp (x′

iβ)−E [log (yi!) |xi] .

Now, suppose that we ignore our original problem of maximizing E[`i(β)] and decide
instead to maximize E[`i(β)|xi]. Note that this is one of the “sub-problems” discussed in
section 2.2 above, in which x is held fixed. The first order condition for this problem is

∂

∂β
E [`i(β)|xi] = {E [yi|xi]− exp (x′

iβ)}xi = 0.

Because the objective function is concave, the solution to this first-order condition is a
global optimum. So what is the solution? Under Assumption 2.1, E(yi|xi) = exp(x′

iβo).
It follows that setting β = βo makes E[yi|xi] − exp(x′

iβ) exactly zero. Notice that this
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solution does not depend on xi. Thus, for any realization of xi and any β,

E[`i(β)|xi] ≤ E[`i(βo)|xi].

Taking expectations of both sides, it follows that

E [`i(β)] = E {E[`i(β)|xi]} ≤ E {E[`i(βo)|xi]} = E [`i(βo)] .

Since E[`i(βo)] ≥ E[`i(β)] for any value of β, we have shown that the pseudo-true param-
eter value under the Poisson regression model from (2.4) coincides with the parameter
βo of the conditional mean function from Assumption 2.1.10 In other words, as long as
E(y|x) = exp(x′βo), Poisson regression will recover βo regardless of whether the true
conditional distribution of yi|xi is a Poisson. While we established this fact for a par-
ticular choice of m(x;β) the result is general: Poisson Regression is consistent for the
true parameters of the conditional mean function as long as we have correctly specified
E(y|x), i.e. as long as E(y|x) = m(x;β) for some value of β. This is similar to the result
that we obtained for the simple Poisson MLE example from chapter 1 above: regardless
of whether yi ∼ Poisson(θ), θ̂ is still consistent for E(yi).

2.6 Alternative Asymptotic Variance Matrices

Using the notation defined in section 2.3, the matrices J and K from Theorem 2.1 are

J ≡ −E [Hi(βo)] = E [exp (x′
iβo)xix

′
i]

K ≡ Var [si(βo)] = E [si(βo)si(βo)
′] = E

[
u2
i (βo)xix

′
i

]
in the Poisson regression case.11 Notice that J only depends on the marginal distribution
of x, while K depends on the joint distribution of (x, y). By iterated expectations,

K = E
(
E
[
{yi −E(yi|xi)}2 |xi

]
xix

′
i

)
= E [Var(yi|xi)xix

′
i] (2.8)

so we see that assumptions about Var(y|x) affect the asymptotic variance of β̂ from
Theorem 2.1 through K. In this section we consider a number of possible assumptions
for Var(y|x), leading to different asymptotic variance matrix calculations for the Poisson
regression estimator β̂. The first, and strongest, of these assumptions is the Poisson
variance assumption, which holds automatically if the Poisson regression model from
(2.4) is correctly specified.

10Strictly speaking we have not shown that βo is the unique maximizer of the expected log likelihood.
There can be multiple solutions if the regressors x are perfectly co-linear, as in OLS regression.

11Although Var[si(βo)] = E[si(βo)si(βo)
′] − E[si(βo)]E[si(βo)]

′, the second term drops out since
E[si(βo)] = 0 by the first-order condition for MLE.
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Assumption 2.2 (Poisson Variance Assumption). Var(y|x) = E(y|x)

Substituting Assumption 2.2 into (2.8), we obtain K = E [exp (x′
iβo)xix

′
i] under

Assumption 2.1. Hence, the Poisson variance assumption implies K = J, so that
J−1KJ−1 = J−1. In this case,

Ĵ−1 =

[
1

N

N∑
i=1

exp
(
x′
iβ̂
)
xix

′
i

]−1

(2.9)

provides a consistent estimator of the asymptotic variance matrix of β̂. Notice that
Assumption 2.2 could still hold even if distribution of yi|xi is not Poisson. All that is
required here is that the conditional mean equals the conditional variance. In practice
however, we would be unlikely to entertain the Poisson variance assumption unless we
considered it plausible that the data truly did arise from a Poisson distribution. A weaker
assumption on Var(y|x) is the Quasi-Poisson assumption.

Assumption 2.3 (Quasi-Poisson Assumption). Var(y|x) = σ2
E(y|x)

Assumption 2.3 allows the conditional variance to differ from the conditional mean
by a scalar factor σ2. When σ2 > 1 we have Var(y|x) > E(y|x), a situation called
overdispersion. This is extremely common in practice: the conditional variance of
real world count data is typically larger than the conditional mean. When σ2 < 1 we
have Var(y|x) < E(y|x), a situation called underdispersion. And in the special case
of σ2 = 1, Assumption 2.3 reduces the to the Poisson variance assumption. Under
Assumption 2.3, K = σ2

E [exp (x′
iβo)xix

′
i] = σ2J and hence J−1KJ−1 = σ2J−1. Equa-

tion 2.9 provides a consistent estimator of J−1 regardless of the assumption we make
about Var(y|x). Thus, to construct a consistent estimator of the asymptotic variance
matrix of β̂ under the quasi-Poisson assumption, we need only find a consistent estima-
tor of σ2. Re-arranging Assumption 2.3 and substituting the definition of Var(y|x) in
terms of E(y|x), we see that

σ2 = E
[
{y −E(y|x)}2 |x

]
/E(y|x).

But since 1/E(y|x) is a function of x, we can pull it inside of the leftmost conditional
expectation, yielding

σ2 = E

[
{y − exp(x′βo)}

2

exp(x′βo)

∣∣∣∣∣x
]

under Assumption 2.1. Now, since σ2 is a constant, it equals E[σ2]. Thus, by iterated
expectations,

σ2 = E[σ2] = E

(
E

[
{y − exp(x′βo)}

2

exp(x′β)

∣∣∣∣∣x
])

= E

[
{y − exp(x′βo)}

2

exp(x′β)

]
.
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this motivates the following simple estimator of σ2

σ̂2 =
1

N

N∑
i=1

[yi − exp(x′
iβ̂)]

2

exp(xiβ̂)
=

1

N

N∑
i=1

û2
i

exp(xiβ̂)

which can be shown to be consistent as N → ∞. Combined with Ĵ−1 from (2.9), this
gives a consistent estimator of the asymptotic variance matrix of β̂ under Assumption 2.3.

The weakest possible assumption we can make for Var(y|x) is no assumption at all!
This gives rise to the robust asymptotic variance matrix estimator Ĵ−1K̂Ĵ−1 where

K̂ =
1

N

N∑
i=1

[
yi − exp(xiβ̂)

]2
xix

′
i =

1

N

N∑
i=1

û2
ixix

′
i

and Ĵ−1 is as defined in (2.9). Using the robust asymptotic variance matrix estimator
in Poisson regression is analogous to using heteroskedasticity-robust standard errors in a
linear regression model. As in the linear regression case, however, the robust asymptotic
variance matrix estimator can be very noisy in small samples.

2.7 Why Poisson Regression Rather Than NLLS?

Throughout this chapter we have assumed that E(y|x) = exp (x′βo), Assumption 2.1. It
turns out that, if the conditional mean is correctly specified, then both Poisson regression
and nonlinear least squares (NLLS) are consistent and asymptotically normal. They
differ, however, in their respective asymptotic variance matrices. So why prefer Poisson
regression over NLLS? We don’t have time to go into this in detail, but here’s the basic
idea. Count data are typically heteroskedastic. If Var(y|x) varies with x, then NLLS
will tend to be relatively inefficient, i.e. it will have a relatively high asymptotic variance.
If the Poisson model is correct, Poisson regression has the lowest variance among all
estimators that leave the distribution of x unspecified. If the Poisson model is incorrect
but Var(y|x) = σ2

E(y|x) then it can be shown that Poisson regression is still more
efficient than NLLS.
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Chapter 3

Binary Outcome Models

Many outcomes of interest in economics are binary: either zero or one. Suppose, for
example, that y = 1 if a person is employed and zero otherwise. Perhaps we observe a
vector of regressors x = {age, sex, education, experience, …} and would like to determine
the predictive relationship between education and employment, holding all other regres-
sors constant.1 In this chapter we’ll consider three models for this situation: the linear
probability model, logistic regression, and probit regression.

3.1 Properties of Binary Outcome Models

We begin with a lemma providing some basic properties of binary outcome models.

Lemma 3.1. Suppose that y is binary and let p(x) ≡ P(y = 1|x). Then,

(i) E(y|x) = p(x), and

(ii) Var(y|x) = p(x) [1− p(x)].

Proof of Lemma 3.1. For part (i),

E(y|x) = 0×P(y = 0|x) + 1×P(y = 1|x) = P(y = 1|x) ≡ p(x).

For part (ii),
E(y2|x) =

{
02 × [1− p(x)] + 12 × p(x)

}
= p(x)

1Notice my careful use of the term predictive relationship. In this chapter, and indeed in this set of
notes, we will not take any stand on whether a particular relationship is causal or merely predictive.
Causal inference is extremely interesting and important, but we unfortunately don’t have time to cover
it here. For notes on this topic from my second-year MPhil lectures, see treatment-effects.com. For a
discussion of “treatment effects” versus “structural” approaches to limited dependent variables models
such as the ones in this chapter, see Angrist (2001) and the associated rejoinders.
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and thus, we obtain

Var(y|x) = E(y2|x)−E(y|x)2 =
{
02 × [1− p(x)] + 12 × p(x)

}
− p(x)2

= p(x) [1− p(x)] .

Lemma 3.1 reveals a crucial fact about binary outcome models: the conditional mean
completely determines the conditional variance. This is quite different from the situa-
tion we encountered when studying count data in chapter 2. While the Poisson model
does imply that the mean and variance are equal, real-world counts are typically over-
dispersed: the variance exceeds the mean. As long as we correctly specify the conditional
mean function for our count dataset, Poisson regression remains consistent regardless of
the true conditional variance. Indeed, we explored a number of possible specifications for
Var(y|x), any of which could comfortably co-exist with a given specification for E(y|x),
and explained how to obtain correct standard errors in each case. When y is binary,
however, it is impossible to correctly specify E(y|x) while mis-specifying Var(y|x). Be-
cause the conditional mean and conditional variance are linked, if we get one wrong, we
will necessarily get the other wrong. Another consequence of Lemma 3.1 is that binary
outcome models necessarily exhibit heteroskedasticity. Whenever E(y|x) depends on x,
so does Var(y|x).

3.2 The Linear Probability Model (LPM)

All of the models for binary outcomes that we study in this chapter amount to assuming
a particular function form for p(x) in terms of a vector of unknown coefficients β. The
linear probability model assumes that p(x) = x′β. By Lemma 3.1, this implies that

E(y|x) = p(x) = x′β, Var(y|x) = x′β (1− x′β) .

The most important thing to realize about the LPM is that it’s just a fancy name for
linear regression with a binary outcome. To see why, suppose that we define u ≡ y−x′β.
Under the LPM, E(y|x) = x′β and hence

E(u|x) = E(y − x′β|x) = E(y|x)− x′β = x′β − x′β = 0.

This means that we can express the LPM as

y = x′β + u, E(u|x) = 0

which we recognize as a linear regression model. Since E(u|x) = 0 OLS estimation of
y = x′β+ u is unbiased and consistent provided that the LPM assumption p(x) = x′β is
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correct, of which more anon. The second most important thing to realize about the LPM
is that the error term u is necessarily heteroskedastic. Since E(u|x) = 0, by Lemma 3.1
and the definition of conditional variance, we obtain

Var(u|x) = E
[
{u−E(u|x)}2 |x

]
= E

[
u2|x

]
= E

[
(y − x′β)

2 |x
]

= E
(
y2|x

)
− 2E (y|x)x′β + (x′β)

2
= p(x)− 2p(x)p(x) + p(x)2

= p(x) [1− p(x)]

Since u is heteroskedastic, inference for the LPM should use robust standard errors.
A key question remains: is the LPM actually a reasonable model for binary outcomes?

If p(x) = x′β then changing xj by ∆ always changes p(x) by βj∆ When xj is a regressor
without an upper or lower bound, this means that our predicted probabilities p(x) could
easily turn out to be greater than one or less than zero! So while the LPM is often a
reasonable approximation, it cannot be literally true as a model for p(x) except in special
cases.2 You will explore one of these special cases on your problem set.

3.3 Index Models: Logit & Probit

As we have seen, a key of the LPM is that it can yield predicted probabilities that lie
outside of [0, 1]. To avoid this problem, we need to constrain our chosen functional form
for p(x) to be between zero and one. Index models achieve this as follows.

Assumption 3.1 (Index Model). Suppose that p(x) = G(x′β), where x includes a
constant, and G satisfies

(i) 0 ≤ G(·) ≤ 1,

(ii) G is differentiable and strictly increasing,

(iii) limz→−∞ G(z) = 0, and limz→∞ G(z) = 1.

In Assumption 3.1, we call x′β the linear index and G the index function. No-
tice that the four requirements for the index function G are identical to the conditions
required for a function to be the cumulative distribution function (CDF) of a continuous
random variable. This gives us an easy way to construct an index model: simply choose a
continuous random variable and use its CDF. We’ll discuss some common choices for G in
a moment, but first it is worth asking why the conditions of Assumption 3.1 make sense.
Part (i) should be clear. Since G(x′β) is supposed to be a probability, the function G

should only take values between zero and one. But what about the remaining conditions?
2For a discussion of the LPM as an approximation when studying causal effects, see Angrist (2001).

28



To understand the value of part (ii), consider partial effects of x, i.e. the derivatives
of p(x) with respect to x. By (ii), G is differentiable. Let g denote it’s derivative. Then,

∂

∂xj

p(x) = g(x′β)βj, g(z) ≡ d

dz
G(z). (3.1)

Notice that the partial effect of xj depends on the value of x at which we evaluate g.
Since G is assumed to be strictly increasing, g is strictly positive: g(x′β) > 0 for any
value of x or β. This implies that the sign of the partial effect is completely determined
by βj, a very convenient property. Without Assumption 3.1 (ii), this would not hold.

Whereas Assumption 3.1 (i) ensures that the predictions from an index model must
be valid probabilities, (iii) allows these probabilities to be arbitrarily close to zero or
one. A model without this feature would be insufficiently flexible, as it could only yield
predicted probabilities in a limited range. Although it was not given a number, we snuck
one further condition into Assumption 3.1, namely the requirement that x include a
constant. To see why this is important, consider an index model with a single regressor
x and no constant, p(x) = G(βx). Regardless of the value of β, this model implies that
P(y = 1|x = 0) = G(0). But this is a very strange restriction. Just as it practically
always makes sense to include an intercept in a linear regression model, it makes sense
to do so in an index model. Adding one to this example would yield p(x) = G(β0 + β1x)

so that P(y = 1|x = 0) = G(β0) and β0 becomes a parameter that we estimate from the
data rather than arbitrarily setting equal to zero.

While it is possible to construct an index model from any continuous CDF G, two
choices are common in practice. The logistic regression model, or logit for short, takes

G(z) = Λ(z) ≡ exp(z)

1 + exp(z)

where Λ denotes the CDF of a “standard logistic” random variable. In contrast, the
probit regression model, or probit for short, takes

G(z) = Φ(z) ≡
∫ z

−∞

1√
2π

exp
(
−t2/2

)
dt

where Φ is the CDF of a standard normal distribution.3 Figure 3.1 compares the standard
logistic and standard normal distributions. Both the logistic density λ and the normal
density ϕ are bell-shaped and symmetric about zero, but compared to normal, the logistic
has a greater spread. This is because the standard logistic random variable has a variance
of π2/3 ≈ 3.3 compared to 1 for the standard normal.

3A lesser-known alternative to probit called robit regression takes G to be the CDF of a Student-t
distribution. See Liu (2004) for details.
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Figure 3.1: At left: λ is the density of a standard logistic and ϕ of a standard normal RV. At
right: Λ is the CDF of a standard logistic and Φ of a standard normal RV.

3.4 Partial Effects

We have now seen three different models for binary outcomes: the LPM, logit and probit.
Each of them depends on the same covariate vector x through the linear index x′β, but
the interpretation of β in terms of partial effects differs across the three specifications.
Since the linear probability model is simply linear regression, the partial effects for this
model are given by

∂

∂xj

p(x) =
∂

∂xj

x′β = βj.

In other words, increasing xj by one unit increases our prediction of the probability that
y = 1 by βj. For logit and probit, the partial effects are more complicated. For any index
model (see Assumption 3.1) we have

∂

∂xj

p(x) =
∂

∂xj

G(x′β) = g(x′β)βj, g(z) ≡ d

dz
G(z) (3.2)

so the magnitude of a partial effect depends on the value of x at which it is evaluated. As
explained above, the sign of a partial effect coincides with that of βj because g is strictly
greater than zero. Now, since

d

dz
Λ(z) ≡ λ(z) =

d

dz

(
ez

1 + ez

)
=

ez(1 + ez)− ezez

(1 + ez)2
=

ez

(1 + ez)2

specializing (3.2) to logit gives

∂

∂xj

Λ(x′β) = λ(x′β)βj =
βj exp(x

′β)

[1 + exp(x′β)]2
.
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And since
d

dz
Φ(z) = ϕ(z) =

exp {−z2/2}√
2π

specializing to probit yields

∂

∂xj

Φ(x′β) = ϕ(x′β)βj =
βj exp{−(x′β)2/2}√

2π
.

Given that partial effects for logit and probit vary with x, how can we summarize
them? There are several possibilities. The first is to consider the maximum partial ef-
fect. Since the logistic density λ is unimodel and symmetric around zero (see Figure 3.1),
the maximum partial effects for these models occur when x′β = 0. Thus, the maximum
partial effect for logit is

λ(0)βj =
βj exp(0)

[1 + exp(0)]2
=

βj

4
.

This is sometimes called the the divide-by-four rule: if βj is the coefficient on xj in a
logistic regression model, then the partial effect of xj cannot exceed βj/4 or equivalently
0.25×βj. Because the normal density ϕ is also unimodel and symmetric around zero, we
can apply the same reasoning: the maximum partial effect for probit is

ϕ(0)βj =
βj exp(0)√

2π
=

βj√
2π

≈ 0.4× βj.

Though not quite as catchy as the divide-by-four rule the preceding expression still gives
us a useful result: if βj is the coefficient on xj in a probit regresison model, then the
partial effect of xj cannot exceed 0.4× βj.

We can also summarize an index model by considering relative effects, the ratio of
the partial effects of xj and xh. By (3.2), we see that these do not depend on x:

∂
∂xj

p(x)

∂
∂xh

p(x)
=

βjg(x
′β)

βhg(x′β)
=

βj

βh

.

So, for example, if β3 is twice as large as β4, this means that the partial effect of x3 is
twice as large as that of x4 regardless of the value of of x at which we evaluate them.

A third and final way to summarize the results of an index model is by calculating av-
erage partial effects (APEs). The idea here is quite intuitive: if the partial effects vary
with x, then a reasonable way to summarize them is by averaging over the distribution
of x in the population, i.e.

APE ≡ E

[
∂

∂xj

G(x′β)

]
= E[g(x′β)]βj.

The APE tells us the average value of the APE for the people in our population. This
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is not the same thing, however, as the APE evaluated at the average value of x in the
population. Stated mathematically,

E[g(x′β)]βj 6= g(E[x]′β)βj

because E[f(Z)] does not in general equal f(E[Z]), except in the special case where f is
a linear function.

To estimate maximum partial effects and relative partial effects, we simply substitute
estimates of the relevant parameters, β̂j and β̂h. To estimate the average partial effect, we
substitute estimates of β and replace the population expectation with a sample average:

ÂPE ≡

[
1

N

N∑
i=1

g(x′
iβ̂)

]
β̂j.

3.5 Identification of Index Models

Suppose that y satisfies the index model from Assumption 3.1. If we somehow knew
the joint distribution of y and x, would it be possible to work backwards and determine
the value of β? More precisely, is there a unique solution for β? If so, then we say
that the parameter vector β is identified. Otherwise we say that it is unidentified.
Identification is an important concept in econometrics because tells us about the limits
of what can be learned from data. If β is unidentified, then regardless of how much data
we accumulate, there will be no way to learn its precise value.4

Identification is a tricky concept because it depends both on what we can observe
from the data, and the modeling assumptions we are willing to make. In this section we
will ask whether β is identified assuming that the index model from above is correct and
that we can observe the joint distribution of (y,x). When we consider conditional MLE
for index models in the following section, we will not necessarily assume that the index
model is correct. In that context, identification becomes a question of whether there is a
unique KL-minimizing parameter value, something we have tacitly assumed thus far.5

There are many ways to show that a parameter is identified. The simplest is to
solve for it in terms of the information we can observe. Under the index model from
Assumption 3.1, E(y|x) = G(x′β) where G is a known function, e.g. the standard logistic
or normal CDF. Since G is strictly increasing, it has an inverse: G−1. Applying this
inverse function to both sides of the equation gives G−1 (E[y|x]) = x′β. Pre-multiplying

4If knowledge of the whole population—in the form of the joint distribution of (y,x)—does not suffice
to solve for β, knowledge of a sample certainly won’t do the trick!

5This hinges on the shape of the expected log-likelihood and the distribution of x.

32



both sides of this equality by x, we see that

xG−1 (E[y|x]) = xx′β.

Therefore, taking expectations of both sides and solving for β, we obtain

β = {E[xx′]}−1
E
{
xG−1 (E[y|x])

}
.

so long as E[xx′] is invertible. Since we assume that the joint distribution of (y,x) is
known, so are E[y|x] and E[xx′]. Thus, since G is known, β is identified if and only if
the matrix E[xx′] has full rank. Here’s another way to think about the preceding result.
Define ỹ ≡ G−1(E[y|x]). Recall that y is a random variable and x is a random vector.
Since E(y|x) is a function of the random vector x, it too is a random variable. And since
ỹ is a function of E(y|x), it is a random variable as well. If G is known and we observe
the joint distribution of (y,x) then we also know the joint distribution of (ỹ,x). And now
we have what amounts to a standard linear regression problem stated in terms of ỹ and x.
In particular, E[xỹ] = E[xx′]β admits a unique solution whenever E[xx′] is invertible.

3.6 Conditional MLE for Index Models

So how can we estimate the parameters of an index model? As we did for Poisson
regression, we’ll again rely on conditional maximum likelihood estimation. Suppose we
observe a random sample (y1,x1), . . . , (yN ,xN) where yi is binary. Then the conditional
likelihood of a single observation is given by

f(yi|xi,β) =

{
1−G(x′

iβ) if yi = 0

G(x′
iβ) if yi = 1

which we can write more compactly as

f(yi|xi,β) = G(x′
iβ)

yi [1−G(x′
iβ)]

1−yi .

It follows that the conditional log-likelihood of a single observation is

`i(β) ≡ log f(yi|xi,β) = yi log [G(x′
iβ)] + (1− yi) log [1−G(x′

iβ)] (3.3)

and, because we observe iid data, the conditional maximum likelihood estimator is

β̂ ≡ argmax
β∈Θ

1

N

N∑
i=1

`i(β).
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So what exactly does β̂ estimate? Applying the theory for mis-specified conditional
maximum likelihood estimation that we discussed in chapters 1–2, define

βo ≡ argmax
β∈Θ

E [`(β)] .

If our index model is correctly specified, then E(y|x) = p(x) = G(x′βo). If not, then
β is still intepretable as the parameter value that minimizes the KL divergence from
the unknown true conditional distribution p0(x) to our parametric model G(x′β), as
discussed in chapters 1–2. Recalling the asymptotic results from these same chapters,

√
N(β̂ − βo) →d N (0,J−1KJ−1)

where J and K are defined in terms of the Hessian Hi and score si according to

J = −E [Hi(βo)] Hi(β) ≡
∂si(β)

∂β′

K = E [si(βo)si(βo)
′] si(β) ≡

∂`i(β)

∂β
.

The robust variance matrix J−1KJ−1 is quite complicated for index models, so we’ll let
the computer calculate it for us. Under the assumption that our index model is correctly
specified, i.e. po(x) = G(x′βo), the asymptotic variance matrix simplifies to J−1 by the
information matrix equality.6 In this case, we have

√
N(β̂ − βo) →d N (0,J−1).

It turns out to be fairly unpleasant to calculate J directly, so we use a different approach.
By iterated expectations, we can write

J = −E [Hi(βo)] = −E {E [Hi(βo)|xi]} .

For correctly specified index models E[Hi(βo)|xi] turns out to be much easier to work
with than its unconditional counterpart. While we only consider the application of this
idea to index models, this conditional approach to calculating J is more broadly applicable
to correctly specified maximum likelihood models.

Theorem 3.1. If G(x′βo) satisfies Assumption 3.1 and po(x) = G(x′βo), then

J = E

{
g(x′

iβo)
2xix

′
i

G(x′
iβo) {1−G(x′

iβo)}

}
6See chapter 1 for a proof.
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Proof of Theorem 3.1. In the first step, we calculate the score vector. By (3.3),

si ≡
∂

∂β
`i(β) =

yig(x
′
iβ)xi

G(x′
iβ)

− (1− yi)g(x
′
iβ)xi

1−G(x′
iβ)

and hence, writing each term with a common denominator, we obtain

si =
g(x′

iβ)xi

G(x′
iβ) [1−G(x′

iβ)]
{[1−G(x′

iβ)] yi −G(x′
iβ)(1− yi)} =

g(x′
iβ)xi [yi −G(x′

iβ)]

G(x′
iβ) [1−G(x′

iβ)]
.

In the second step, we begin calculating the Hessian by applying the product rule to
our expression for si as follows,

Hi(β) ≡
∂si
∂β′ =

∂

∂β′

{
[yi −G(x′

iβ)]

[
g(x′

iβ)xi

G(x′
iβ) {1−G(x′

iβ)}

]}
=

−g(x′
iβ)

2xix
′
i

G(x′
iβ) {1−G(x′

iβ)}
+ [yi −G(x′

iβ)]M(xi,β)

defining the shorthand

M(xi,β) =
∂

∂β′

{
g(x′

iβ)xi

G(x′
iβ) [1−G(x′

iβ)]

}
.

Now, a direct approach to calculating J would require us to use the quotient and product
rules to evaluate the derivative defined by M(xi,β), substitute this into the expression
for Hi(β) and then take expectations. This is very messy, and there’s a good chance that
we’d make a mistake. Fortunately, there’s a simpler approach.

By definition, −J is the expectation of Hi(β) evaluated at βo. In the third step, we
calculate the conditional expectation of Hi(βo) given x, yielding

E [Hi(β)|xi] =
−g(x′

iβ)
2xix

′
i

G(x′
iβ) {1−G(x′

iβ)}
+E [yi −G(x′

iβ)|xi]M(xi,β)

=
−g(x′

iβ)
2xix

′
i

G(x′
iβ) {1−G(x′

iβ)}

since M(xi,β) is a function of xi and E[yi −G(x′
iβo)|xi] = 0 under the assumption that

our index model is correctly specified. Finally, by iterated expectations,

J = −E [Hi(βo)] = −E {E [Hi(βo)|xi]} = E

{
g(x′

iβo)
2xix

′
i

G(x′
iβo) {1−G(x′

iβo)}

}
.

From Theorem 3.1, we obtain the following asymptotic distribution for the conditional
maximum likelihood estimator of a correctly-specified index model

√
N(β̂ − βo) →d N

(
0,J−1

)
, J−1 = E

{
g(x′

iβo)
2xix

′
i

G(x′
iβo) {1−G(x′

iβo)}

}−1
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and it can be shown that the following expression provides a consistent estimator of the
asymptotic variance matrix:

Ĵ−1 ≡

 1

N

N∑
i=1

g(x′
iβ̂)

2xix
′
i

G(x′
iβ̂)
[
1−G(x′

iβ̂)
]


−1

.

3.7 Pseudo R-squared

There is no single agreed-upon measure of in-sample fit for binary outcome models. A
measure that is often reported in applied work in economics is the so-called pseudo
R-squared.7 Although this measure has little else in common with the more familiar
R-squared from linear regression, the pseudo R-squared is unitless, and takes on a value
between zero and one where larger values indicate a better in-sample fit.

Pseudo R-squared is constructed from the maximized sample log-likelihood of two
models: the “full” model, whose fit we will evaluate, and a “null” model that contains
only an intercept. Let `(β̂) denote the sample log-likelihood of the full model, evaluated
at its MLE, β̂, and `(ȳ) denote the sample log-likelihood of the null model evaluated at
its MLE, G−1(ȳ).8 Then, the pseudo R-squared is defined by

R̃2 ≡ 1− `(β̂)

`(ȳ)
=

`(ȳ)− `(β̂)

`(ȳ)
.

On your problem set, you will show that this measure is always between zero and one.
Intuitively, R̃2 compares the fit of the full model to that of the null model, where fit

is measured by the respective log-likelihoods. If the two fit equally well, then the ratio of
log-likelihoods is one, so R̃2 = 0. The better the fit of the full model compared to the null
model, the closer R̃2 will be to one. Figure 3.2 provides some intuition for this measure
in a simple example. Note that this is related to but not the same as a likelihood ratio
test of the full model against the null model. An LR test statistic is constructed from
`(ȳ)− `(β̂), whereas R̃2 divides this quantity by `(ȳ).

7See Windmeijer (1995) for discussion of various alternative measures.
8 Consider an index model with only an intercept β0. Regardless of the choice of index function G,

the MLE for this parameter equals G−1(ȳ) where ȳ is the sample mean of y. Try verifying this as a
practice problem.
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`(β̂)

L(β̂)

`(ȳ)

L(ȳ)

R̃2 = 1−
(−1
−3

)
≈ 0.66

Figure 3.2: A hypothetical example of calculating pseudo R-squared R̃2. The log-likelihood
`(β̂) of the unrestricted model is −1 while that of the model with only an intercept, `(ȳ), is −3.
This gives a pseudo R-squared of approximately 0.66.
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Chapter 4

Random Utility Models

In chapter 3 we examined binary outcome models from a purely statistical perspective,
namely as a model for P(y = 1|x) when y is a binary random variable. It turns out
that there is another way of thinking about these models, one that relates them to
economic models of rational choice. This is the so-called random utility or discrete
choice approach. Random utility models provide not only a novel interpretation of
probit and logit, but a framework for constructing richer models for discrete outcomes.
The discussion and notation below mainly follow chapters 1–3 of Train (2009). See also
Chapter 15 of Cameron and Trivedi (2005).

4.1 Overview of Random Utility Models

We’ll begin with some basic terminology. In a discrete choice model a decision-maker—a
household, person, or firm—chooses from a collection of alternatives—products or
actions—to maximize her utility. The set of all alternatives that are available to the
decision-maker is called the choice set. Because I’m growing weary of typing “decision-
maker” over and over, I’ll give mine a name: Alice. We only consider models that satisfy
the following conditions.

Assumption 4.1 (Choice Sets).

(i) Choices are mutually exclusive.

(ii) The choice set is exhaustive.

(iii) The number of alternatives is finite.

Part (i) of Assumption 4.1 says that Alice chooses only one of the alternatives. Part
(ii) says that the choice set contains every alternative or, to put it another way, that the
Alice always chooses something from the choice set. In fact, these two conditions are not
restrictive. If necessary, we can always redefine the choice set so that it satisfies them
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automatically. For example, suppose Alice is at a restaurant that serves beer and pizza.
Unless this is a very strange restaurant, the choice between beer and pizza is not mutually
exclusive: nothing is to stop Alice from ordering both. In this case the appropriate choice
set is not {Beer, Pizza} but rather

{Beer only, Pizza only, Beer & Pizza}.

Unless beer and pizza are the only things on the menu, however, this choice set is not
exhaustive. But this too is easy to correct: simply add a “default” option, for example

{Beer only, Pizza only, Beer and Pizza, Something Else}.

Now we have a choice set that satisfies all the requirements of Assumption 4.1. To make
further progress, we need to define some notation. As mentioned above, this discussion
follows Train (2009). Some of the notation is a bit different from what we’ve used in
earlier chapters, so stay alert! There are N decision-makers, indexed by n = 1, 2, . . . , N .
Each decision-maker chooses between J alternatives, indexed by j = 1, . . . , J . Let Unj

denote the utility that decision-maker n obtains if she chooses alternative j. We assume
that choices are rational: Alice chooses the alternative that maximizes her utility.

Assumption 4.2 (Rational Choice). Decision-maker n chooses alternative i if and only
if Uni > Unj for any j 6= i.

Utility, of course, is unobserved. So if we want to model choice, we need to spec-
ify what we do observe. The basic idea behind random utility models is to back out
preferences from observed choices and attributes, given the assumption of rational choice.

Assumption 4.3 (Observables). The researcher observes:

(i) the attributes xnj of each alternative,

(ii) the attributes sn of each decision-maker, and

(iii) the choice that each decision-maker makes.

Attributes of an alternative could be the price of beer, the kind of pizza, and so
on, while attributes of a decision-maker could be age, sex, education etc. We assume
that the researcher can specify a function Vnj(xnj, sn) relating attributes xnj of each
alternative j and attributes sn of each decision-maker n to her utilities Unj. We call Vnj

the representative utility. To drive home the distinction, I will sometimes call Unj

true utility. In effect, Vnj is the part of Unj that is “explained” by xnj and sn.
To obtain an econometric model to which we can apply probabilistic reasoning, we

need a source of randomness. Rather than treating a given person’s choices as random,
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we instead view randomness as a feature of our sampling procedure, arising from differ-
ences between people that are not captured in our model of representative utility. Such
differences are often called unobserved heterogeneity. The idea is as follows. De-
fine the error term εnj ≡ Unj − Vnj to be the difference between true utility Unj and
representative utility Vnj for decision-maker n and alternative j. Because there are J

alternatives, there are J error terms for each decision-maker, namely

ε′n ≡ [ εn1 . . . εnJ ].

The vector of errors ε represents unobserved factors that affect choices but are not cap-
tured by the representative utilities. We will treat these errors as random in the following
sense. Alice and Bob, along with all of their fellow decision-makers n = 1, . . . , N are a
random sample from some population. In this population, some decision-makers with the
same attributes make different choices. This means that they must have different error
terms. We can represent these differences in the population using a probability density
function f(εn). From this perspective, drawing a decision-maker at random from the
population is equivalent to making a random draw of ε according to f . Alice’s choice
isn’t random; the fact that we sampled her from the population is.

Using this formulation, we can calculate choice probabilities: the probability that
decision-maker n chooses alternative j. In particular,

Pni ≡ P(Uni > Unj ∀j 6= i) =

∫
RJ

1 {εnj − εni < Vni − Vnj ∀j 6= i} f(εn) dεn. (4.1)

We now have all the ingredients needed to give an overview of random utility models:

1. Write down a parametric model for Vnj(xnj, sn) with unknown parameters θ.

2. Choose a distribution f for the errors (unobserved heterogeneity) εn.

3. Calculate the choice probabilities as a function of parameters θ.

4. Use observed choices and attributes to find the maximum likelihood estimate θ̂.

As we will show below, logit and probit can both be viewed as special cases of the general
random utility approach when the choice set contains only two elements and we choose
particular error distributions. More broadly, random utility models provide a framework
for estimating much richer discrete choice models.

Notice that the expression for the choice probabilities from (4.1) implicitly treats the
representative utilities as fixed constants rather than random variables. In reality,
of course, they are not fixed. Instead, what we have in mind is a conditional model: Vnj

depends on observed attributes xnj and sn and an unknown parameter vector θ and all
probabilities are implicitly conditioned on (xnj, sn). Both to match Train (2009) and to
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avoid cluttering the notation, I often suppress explicit conditioning on (xnj, sn) in the
discussion that follows. If you find this more confusing than helpful, feel free to add it
back in when you write out your notes!

With the exception of a short break for beer and pizza, our discussion so far has been
very abstract. To make things more concrete, let’s close this section with a very simple
example. Suppose there are exactly two ways to get to work: by car and by bus. We
observe two attributes: the cost in time T and money M of each mode of transport. Now,
suppose that we specify the following model for representative utilities, with unknown
parameters (β, γ)

Vcar = βTcar + γMcar Ucar = Vcar + εcar

Vbus = βTbus + γMbus Ubus = Vbus + εbus.

In this admittedly very simple example, the choice probabilities can be written as

Pcar = P(εbus − εcar < Vcar − Vbus)

Pbus = P(εcar − εbus < Vbus − Vcar) = 1− Pcar.

This model allows observed heterogeneity to enter through T and M , depending on what
we know about each decision-maker. For example, perhaps Bob is 70 and gets a discount
on public transport so his Mbus is low while Alice lives far from the bus stop, so her Tbus

is high. In contrast, unobserved heterogeneity enters through the error terms. Perhaps
James hates to drive (εcar − εbus < 0) but Steve loves driving (εcar − εbus > 0).

4.2 The Likelihood for Random Utility Models

As described in the previous section, a random utility model combines a specification
for Vnj(xnj, sn) in terms of an unknown parameter vector θ with an assumed density f

for the vector of errors εn. We now explain how to write down the likelihood for such a
model, allowing us to estimate and carry out inference for the parameter vector θ. First a
bit of notation: let yn ∈ {1, . . . , J} denote decision-makers n’s choice, and zn denote the
vector of all attributes for decision-maker n, potentially including both attributes that
are fixed across alternatives, sn, and attributes that are not, xnj.

Given the observed covariates zn, by (4.1) the choice probabilities Pni can viewed as
a function of θ, namely P(yn = i|zn;θ). In some cases we can work out a closed form
expression for this function. In the conditional logit model, described in more detail in
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section 4.5, Vnj = x′
njβ and the choice probabilities are

Pni = P(yn = i|zn;θ) =
exp(x′

niβ)∑J
j=1 exp(x

′
njβ)

.

Unfortunately, models like the conditional logit are quite rare. For most densities f that
we might choose for the error terms εn, e.g. a multivariate normal density, the integral
from (4.1) has no closed form. In such cases, we cannot calculate the choice probabilities
Pni directly and must instead rely on numerical approximations or simulation-based meth-
ods. But even when we cannot write down a simple formula for the choice probabilities,
they are still a function of θ given observed attributes.

The hard part about random utility models is calculating the choice probabilities.
Given Pni, however, the likelihood is straightforward. Conditional on the attributes zn,
the observed choice yn is a random variable with support set {1, 2, . . . , J} and

P(yn = j|zn;θ) = Pnj =
J∏

j=1

P
1{yn=j}
nj

where 1 {yn = j} equals 1 if yn = j and zero otherwise. Thus, given a random sample of
N observations (yn, zn), the log-likelihood function is given by

`N(θ) =
N∑

n=1

J∑
j=1

1 {yn = j} logPnj, (4.2)

which, as explained above, depends on θ through the choice probabilities Pnj. Note that
(4.2) holds for any random utility model. The differences between different models come
from different choice probabilities Pnj, which in turn come from different specifications
for Vnj and the error density f .

4.3 Identification of Choice Models

Our goal when writing down a random utility model is to identify and estimate the
parameters from our specification for the representative utilities Vnj. In the car versus
bus example from above we supposed that Vnj = βTnj + γMnj where Tnj and Mnj were
the time and monetary costs of a given mode of transportation j for a particular decision-
maker n. Here, the parameters of interest are (β, γ). We say that a parameter is identified
if it could be uniquely determined by observing the whole population of data from which
our sample was drawn.1 Fundamentally, identification is about what we can and cannot

1As Lewbel (2019) points out “econometric identification really means just one thing … yet well over
two dozen different terms for identification now appear in the econometrics literature.” If you’re confused
about the way this term is used in any papers or references you’ve come across, I strongly recommend
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learn from data. In the context of random utility models, the relevant question is: given
that we cannot observe utilities, what can we learn from choices and attributes? There
are two crucial insights for answering this question, both of which should be at least
somewhat familiar from your coursework in microeconomics:

1. Only differences in utility matter.

2. The scale of utility is irrelevant.

We will explore the consequences of each of these in turn.

4.3.1 Only differences in utility matter.

We assumed that Alice chooses the alternative with the highest utility, namely the i such
that Uni > Unj for all j 6= i. Subtracting Unj from both sides of the inequality, this is
the same thing as choosing the i such that Uni − Unj > 0 for all j 6= i. In other words,
all that matters is how much better or worse a given alternative is than the others. In
terms of choice probabilities,

P(Uni > Unj ∀j 6= i) = P (Uni − Unj > 0 ∀j 6= i) .

Because only differences in utility matter, only differences of errors matter for calculating
choice probabilities. Let ε̃njk ≡ εnj−εnk be the difference of errors εnj and εnk. Taking this
idea further, let ε̃ni be the vector of all unique differences taking εni as the “base case.” For
example, in a setting with three alternatives and error terms ε′n = (εn1, εn2, εn3), we could
calculate two difference relative to the first error term, namely ε̃′n1 = (εn2−εn1, εn3−εn1).
If there are J alternatives, then there are J errors and (J−1) unique differences. Defining
g to be the joint density of ε̃ni, we can calculate the choice probabilities as

Pni ≡ P (Uni > Unj ∀j 6= i) = P(εnj − εni < Vni − Vnj ∀j 6= i)

= P(ε̃nji < Vni − Vnj ∀j 6= i) =

∫
RJ−1

1 {ε̃nji < Vni − Vnj ∀j 6= i} g(ε̃ni) dε̃ni.

Notice that this is a (J − 1)-dimensional integral rather than a J-dimensional integral
because, again, the number of differences is one fewer than the number of error terms.

So what does all of this have to do with identification? The simple insight that only
differences of utility matter for choices has two important consequences. First, we cannot
identify a different intercept for each alternative. Second, only differences of effects for
decision-maker attributes are identified. We’ll consider each of these in the context of
our car versus bus example from above.

taking a look at the aforementioned review article.
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The representative utility Vnj = βTnj + γMnj from our car versus bus example did
not include intercepts. Suppose we add them in, yielding

Ucar = αcar + βTcar + γMcar + εcar

Ubus = αbus + βTbus + γMbus + εbus.

What has changed by adding αcar and αbus? As you may recall from your lectures on
linear regression, adding an intercept to a model is a way of “absorbing” a nonzero mean
for the error term. Suppose Unj = x′

njβ + ε∗nj where xnj excludes a constant. If we
define αj ≡ E[ε∗nj] and εnj ≡ ε∗nj − αj, then Unj = αj + x′

njβ + εnj where E[εnj] = 0

by construction. So compared to our original car versus bus example from above, this
new version has E[εcar] = E[εbus] = 0. Now, when deciding whether to travel by bus or
car, Alice only needs to consider the difference of utilities Ubus − Ucar. Subtracting the
preceding equations,

Ubus − Ucar = (αbus − αcar) + β (Tbus − Tcar) + γ (Mbus −Mcar) + (εbus − εcar) .

Notice that the two intercepts αbus and αcar only enter this expression as a difference.
This means that, as far as Alice’s decision is concerned, all that matters is the value of
αbus −αcar, not the values of αbus and αcar separately. To make this more concrete: Alice
doesn’t care whether αbus = 3 and αcar = 2 or whether αbus = 101 and αcar = 100. In
each case αbus − αcar = 1. Because the specific values of each intercept can never affect
Alice’s choices, and we only observe choices rather than utilities, there is no way that we
can separately identify αbus and αcar. We can only learn the difference of these, since it is
the differences that can actually affect Alice’s choices.2 More generally, in a model with J

alternatives we can only identify the (J−1) differences of intercepts. Another way
of thinking about this is by designating one of the alternatives as the “base case” as we
did when constructing the differences of errors above. We can only learn the differences
of intercepts relative to this base case.

Our car versus bus example from above contained only attributes that varied de-
pending on whether Alice traveled by bus or car: Tnj and Mnj. In the language of
Assumption 4.3, these are attributes xnj of the alternatives.3 What happens if we in-
clude an attribute sn of the decision-maker, in other words an observed characteristic

2Here’s a simpler example with the same structure. Suppose X1, . . . , Xn ∼ N(µ1−µ2, σ
2). No matter

how large n may be, we can never learn µ1 and µ2 separately in this example. In contrast, it’s easy to
learn their difference: X̄n is an unbiased and consistent estimator of µ1 − µ2.

3The terminology in Assumption 4.3 can be a little confusing. If Bob is a senior citizen and Alice
is not, then his Mbus will be lower than hers. In spite of this, we do not call Mnj a decision-maker
attribute. The distinction is between attributes that vary across alternatives and might also vary across
decision-makers, xnj , and attributes that vary across decision-makers but not across alternatives, sn.
The clue is in the subscripts: sn does not have a j index.
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that does not vary with mode of transportation? Annual income is a good example: this
varies across decision-makers—Alice may earn more than Bob—but does not vary across
alternatives for the same decision-maker—Alice’s income doesn’t depend on which mode
of transport she chooses. Defining Y to be income, suppose that

Ucar = θcarY + βTcar + γMcar + εcar

Ubus = θbusY + βTbus + γMbus + εbus.

Are θcar and θbus both identified? In other words: can we identify the effects of income
Y separately for Bus and Car? Again, only differences in utility matter. Subtracting,

Ubus − Ucar = (θbus − θcar)Y + β (Tbus − Tcar) + γ (Mbus −Mcar) + (εbus − εcar) .

As in the example with αbus and αcar from above, the income effects θcar and θbus only
matter for Alice’s choices through the difference (θbus − θcar). For the same reason,
only this difference is identified: not the individual parameters themselves. In general,
we can only identify differences of effects for decision-maker attributes. We
cannot identify the effect of income on the utility of taking the bus, but we can identify
how much larger this effect is than the effect of income on the utility of driving.

4.3.2 The scale of utility is irrelevant.

Under Assumption 4.2, Alice chooses alternative i if and only if Uni > Unj for all j 6= i.
For any constant λ > 0, however, this is equivalent to λUni > λUnj. This shows that
rescaling the utility of each alternative by a positive constant has no effect on Alice’s
choices. To put it another way the scale of utility is irrelevant.

This seemingly trivial observation has important consequences for the identification
of random utility models. Suppose we specify a model of the form Unj = x′

njβ+εnj where
Var(εnj) = σ2. Because the scale of utility is irrelevant, we are free to multiply both sides
of the model by any positive constant. Choosing to multiply by 1/σ gives the re-scaled
model U∗

nj = x′
nj(β/σ) + ε∗nj where U∗

nj ≡ Unj/σ and ε∗nj ≡ εnj/σ so that Var(ε∗nj) = 1.
Because the scale of utility has no effect on Alice’s choices, there is no way for us to tell
these two models apart given the data we observe. This means that we cannot identify
the scale of the parameter vector β separately from the variance of the error term εnj.
Another way of saying this is that Var(εnj) determines the scale of β.

As we will show in the next section, any of the index models from chapter 3 can
be viewed as a random utility model. From this perspective, the rescaling required to
compare logit and probit coefficients is merely an example of the general phenomenon
that the error variance determines the scale of the model coefficients. This is because the
standard logistic and standard normal distributions have different variances.
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4.4 Index Models as Special Cases: Logit & Probit

Consider a setting with two alternatives, e.g. Alice chooses between taking the bus,
alternative 1, or some other way of getting to work, alternative 2. Let yn = 1 if Alice
chooses the first alternative, bus, and zero otherwise. Now suppose that our model of
representative utility is Vnj = s′nγj. In other words, suppose that the representative utility
depends on decision-maker attributes only. As we discussed in the previous section, only
differences in errors matter for choices. Finally, suppose that (εn2 − εn1) has CDF G and
is independent of sn. Subtracting,

Un1 − Un2 = (s′nγ1 − s′nγ2) + (εn1 − εn2) = s′n(γ1 − γ2) + (εn1 − εn2)

= s′nγ + (εn1 − εn2)

where we define γ ≡ γ1−γ2. Since Alice chooses alternative 1 if and only if Un1−Un2 > 0,
the choice probability for this alternative is given by

P(yn = 1|sn) = P(Un1 − Un2 > 0|sn) = P(εn2 − εn1 < s′nγ|sn) = G(s′nγ).

When G is the standard logistic CDF Λ, this is precisely the logit model from chapter 3;
when G is the standard normal CDF, it is the probit model.

At the beginning of this section, we assumed that the representative utilities only
involved decision-maker attributes. When there are only two alternatives, however, we
can convert attributes of the alternatives into decision-maker attributes in a fairly flexible
way. Suppose that x1n is a vector of attributes for the first alternative, and x2n for the
second. Then the difference of attributes sn ≡ x1n−x2n does not vary across alternatives.
For example, suppose that Alice must choose between taking the bus and driving. If Tbus

and Tcar are her door-to-door commuting time for each mode of transport, then we can
allow Vnj to depend on Tbus − Tcar while still including only decision-maker attributes.

It’s interesting to know that probit and logit can be viewed as random utility models,
but the real value of the methods outlined above is in allowing us to specify richer and
more interesting models that go beyond binary choice. In the next section, we explore
some common models that extend logit to settings with more than two alternatives.

4.5 The Logit Family of Choice Models

As discussed in section 4.2, for most densities f that one might think to specify for the
error terms εn, the integral from (4.1) has no closed form. The so-called “logit family”
of choice models constitute an important exception to this general rule, which explains
their popularity in the days before inexpensive high-performance computing. Although
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Figure 4.1: The density and CDF of Gumbel, aka Type I Extreme Value, random variable.
Left panel: f(z) = exp(−z) exp {− exp(−z)}. Right panel: F (z) = exp {− exp(−z)}.

computing is much cheaper and faster today, models from the logit family remain popular.
Indeed, logistic regression, introduced in chapter 3, is one of the many members of this
venerable family of models. In this section we’ll look at logit models in general and explore
three special cases in detail: multinomial logit, conditional logit, and mixed logit. In the
following section we’ll examine an important limitation of logit models: the so-called
independence of irrelevant alternatives.

The logit family of random utility models is constructed by assuming that the errors
εnj are independent draws from a distribution with CDF F (z) = exp {− exp(−z)}. Under
this assumption, there is a simple and intuitive closed-form solution for Pni, as detailed
in the following theorem. For a proof, see section 4.7.

Theorem 4.1. Suppose that εn1, . . . εnJ ∼ iid F where F (z) = exp {− exp (−z)}. Then,

Pni = P(εnj − εni < Vni − Vnj ∀j 6= i) =
exp (Vni)∑J
j=1 exp (Vnj)

.

The distribution F from Theorem 4.1 is known as the Gumbel or Type I Extreme
Value distribution. Figure 4.1 plots its CDF and density function. As a corollary of
Theorem 4.1, the difference of two independent Gumbel random variables is a standard
logistic random variable. In the case with two errors (εn1, εn2), we obtain

P(εn2 − εn1 < Vn1 − Vn2) =
exp(Vn1)

exp(Vn1) + exp(Vn2)
=

exp(Vn1 − Vn2)

1 + exp(Vn1 − Vn2)

after dividing the numerator and denominator by exp(Vn2). The right-hand side of this
expression equals Λ(Vn1−Vn2), where Λ(z) ≡ exp(z)/[1+exp(z)] is the CDF of a standard
logistic random variable, as defined in chapter 3.
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By specifying the representative utilities Vnj in different ways, Theorem 4.1 allows us
to construct a number of popular discrete choice models for settings with more than two
alternatives. Here we will focus on two of them: the multinomial logit model, which
takes Vnj = s′nγj, and the conditional logit model, which takes Vnj = x′

njβ. To help
us understand the differences between these two models, we will consider the following
simple example.4 Suppose that Alice wants to go fishing this weekend. She can choose
to fish at the beach, from a pier, on a private boat, or on a charter boat. Call these four,
mutually exclusive possibilities 1, 2, 3, and 4.

4.5.1 Multinomial Logit

The multinomial logit model arises when all attributes are fixed across alternatives, so
that Vnj = s′nγj. As discussed in subsection 4.3.1, only the differences, (γj − γi), of co-
efficients for decision-maker attributes are identified. Typically the coefficient associated
with the first alternative, γ1 is normalized to zero. In the fishing example, a multinomial
logit model could allow Alice’s choice of where to go fishing to depend on her income, her
age, and her level of fishing experience, because these do not vary depending on where
she chooses to fish.

Partial effects for the multinomial logit model are tedious to derive and difficult to
interpret, because the attributes sn are common to all alternatives. A simpler approach is
to consider partial effects for relative risk, the effects of sn on ratios of choice probabili-
ties, taking one alternative as the “base case.” Suppose we designate the first alternative
as our base category. Normalizing γ1 = 0, we have exp(s′nγ1) = exp(0) = 1. Hence,

Pni

Pn1

=
exp (s′nγi)∑J
j=1 exp

(
s′nγj

) × ∑J
j=1 exp

(
s′nγj

)
exp (s′nγ1)

=
exp(s′nγi)

exp(s′nγ1)
= exp(s′nγi)

Taking logs, it follows that log (Pni/Pn1) = log [exp(snγi)] = s′nγi. Thus, γ
(k)
i is the

marginal effect of s(k)n on the relative probability that y = i compared to y = 1, measured
on the log scale. In the fishing example, suppose that the kth attribute is income. Then
taking fishing at the beach as the base category, γ(k)

2 is the effect, measured on the log
scale, of a one unit increase in income on the probability that Alice will fish from a pier
relative to the probability that she will fish from the beach.

4.5.2 Conditional Logit

The conditional logit model includes only attributes that vary across alternatives, so that
Vnj = x′

njβ Notice that the coefficient vector β in the conditional logit model is fixed
4A third model called mixed logit combines the multinomial and conditional logit specifications, taking

Vnj = s′nγj + x′
njβ. For more on the mixed logit model, see Cameron and Trivedi (2005, Chapter 15)

and Train (2009, Chapter 6).
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across alternatives while the attributes xnj vary. This is precisely the reverse of the
multinomial logit model, in which coefficients vary across alternatives but attributes do
not. In the fishing example, xnj could include the price and abundance of fish for each
alternative mode of fishing. Perhaps Alice can fish at the beach for free but is unlikely to
catch anything there, while she’s much more likely to catch something on a charter boat
but has to pay $50 to be allowed on the boat.

Because all of the attributes in a conditional logit model are specific to a particular
alternative, it’s much easier to work out partial effects in this model compared to the
multinomial logit model discussed above. On your second problem set, you’ll show that
the own-attribute effects are given by

∂Pnj

∂xnj

= Pnj(1− Pnj)β

while the cross-attribute effects are

∂Pnj

∂xni

= −PnjPniβ

for j 6= i. Notice from these expressions that if increasing x
(k)
nj makes y = j more likely,

it must make y = i less likely. This is because Pnj(1−Pnj) and PnjPni are both positive,
so the sign of the own-effects correspond to those of the coefficients β while those of the
cross-effects have the opposite sign.

4.6 The Independence of Irrelevant Alternatives

While the closed-form expressions for the logit choice probabilities from Theorem 4.1 are
extremely convenient, this convenience comes at a cost. Consider two alternatives: i and
k. Under a logit model,

Pni =
exp(Vni)∑J
j=1 exp(Vnj)

, Pnk =
exp(Vnk)∑J
j=1 exp(Vnj)

by Theorem 4.1 and thus, taking the ratio of the two choice probabilities,

Pni

Pnk

= exp(Vni − Vnk). (4.3)

Equation 4.3 says that the probability of choosing alternative i relative to that of choosing
alternative k depends only the representative utilities of i and k. Because it implies that
the representative utility Vn` of any other alternative ` has no bearing on Alice’s choice
between i and k, this condition is called the independence of irrelevant alternatives,
or IIA for short. IIA arises in logit models because the errors εn1, . . . , εnJ are assumed
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to be independent.5 In many real world examples, however, it is more plausible to allow
dependence between the errors across alternatives. In words: “some alternatives are more
similar than others” and models that ignore this can make nonsensical predictions.6

Consider an example in which each voter n must choose a presidential candidate
j ∈ {Trump, Sanders,Warren}.7 Suppose that our model of representative utility is

Vnj = (Demographicsn)′γj + (Ideologynj)
′β

where Ideologynj is a vector whose elements measure the ideological similarity between
voter n and candidate j on a number of issues, and Demographicsn is a vector of demo-
graphic information, e.g. age, sex, household income, etc. Now, suppose we consider a
group of voters who all have the same demographics and ideology: e.g. white, centrist,
female, mid-westerners between the age of 45 and 50 with an average household income
between $50 and $55 thousand USD. Since these voters all have the same regressors, Vnj

doesn’t vary over n within the group, so we can drop the n subscript and simply write
{VTrump, VSanders, VWarren}.

First consider a two-way race in which this group of voters must choose between
Sanders and Trump. Say that 2/3 of them vote for Sanders. Then we have

PSanders/PTrump = 2.

Now let’s add Warren back into the mix, and consider a choice between all three candi-
dates. Under IIA, PSanders/PTrump is unaffected by our addition of Warren to the choice
set: the relative choice probabilities of any two alternatives do not depend on the represen-
tative utility of any other alternative that may be present. Because Sanders and Warren
are ideologically similar, the representative utility of choosing Warren is approximately
equal to that of choosing Sanders. Thus, under (4.3),

PWarren/PSanders = exp (VWarren − VSanders) ≈ 1.

Because the choice probabilities must sum to one across the full choice set, we have the
following conditions on the choice probabilities in our three-way race under IIA:

PSanders = 2PTrump, PSanders ≈ PWarren, PTrump + PSanders + PWarren = 1.

5For details, see the proof of Theorem 4.1 in section 4.7.
6The classic example in which IIA fails is a choice between driving, taking a red bus, and taking a

blue bus. Personally, I find the “red bus, blue bus example” too artificial to be illuminating, but if you
would like to know more about it, see Train (2009, pg. 46).

7While it’s unlikely that we’ll ever see a three-way presidential race between Donald Trump, Bernie
Sanders, and Elizabeth Warren, it’s at least possible: Sanders, could run as an independent.
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Substituting the first two conditions into third gives

PTrump + 2PTrump + 2PTrump = 1 =⇒ PTrump = 1/5

and because the choice probabilities for Warren and Sanders are approximately equal, it
follows that PWarren = PSanders = 2/5.

To summarize: in our two-way race, 2/3 of our voters preferred Sanders and 1/3
preferred Trump. Under IIA, this implied that the same voters should break 2/5 for
Sanders, 2/5 for Warren, and 1/5 for Trump in a three-way race, given that Sanders and
Warren are ideologically similar. But given what we know about the world, this makes
absolutely no sense. In reality we would expect that adding Warren to the race would
split the anti-Trump vote, leading to vote shares of around 1/3 Trump, 1/3 Sanders, and
1/3 Warren. To put it another way: IIA implies that a considerable share of people who
prefer Trump to Sanders in a two-way race will switch to Warren in a three-way race,
a wildly implausible prediction given what we know about these three politicians. The
problem with this model is that the logit specification assumes εWarren, εSanders, and εTrump

are independent. In reality they’re not: voters who have a high value for εTrump likely
have very low values for εSanders and εWarren. Similarly, voters who have a high value for
εSanders likely also have a high value for εWarren

To solve this problem, we need to go beyond models from the logit family. A pop-
ular model that does not impose IIA is the probit model, a generalization of probit
regression—see chapter 3 and section 4.4—to a setting with three or more alternatives.
Under this model, we assume that εn follows a J-dimensional multivariate normal dis-
tribution with a mean vector of zero and covariance matrix Ω. Crucially Ω need not be
diagonal, allowing for correlation between the errors that we ruled out in Theorem 4.1.
As usual, there is no free lunch. The added flexibility of the probit model introduces
two complications. First, the choice probabilities are no longer available in closed form.
Instead they must be approximated either by simulation or (J − 1)-fold numerical inte-
gration. Second, the parameters that allow for correlation between the error terms must
be estimated along with the parameter vector θ. For more on the probit model, see Train
(2009, Chapter 5).

4.7 Appendix: Deriving Logit Choice Probabilities

The proof of Theorem 4.1 isn’t very technical, but it’s somewhat lengthy, which is why
I’ve relegated it to this appendix. While I won’t require you to be able to reproduce it
on an exam, you may find it helpful to work through this proof. Doing so will deepen
your understanding of random utility models, and give you a chance to practice applying
some results from your lectures on probability from earlier in the academic year.
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Proof of Theorem 4.1. As explained in section 4.1 above, I implicitly condition on
(xnj, sn) throughout, so that the representative utilities can be treated as constants. To
simplify the notation, I also drop the n subscripts: εnj becomes εj while Vnj becomes Vj.

Suppose that ε1, . . . , εJ ∼ iid with CDF F (z) = exp {− exp(−z)}. Our goal is to find
an explicit formula for the choice probabilities

Pi ≡ P(εj − εi < Vi − Vj ∀j 6= i) = P(εj < εi + Vi − Vj ∀j 6= i)

where the second equality follows by moving εi to the right-hand side of the inequality
inside of the probability statement. Rather than calculating this directly, we’ll take an
indirect approach. First we condition on εi, and calculate

Pi(εi) ≡ P(εj < εi + Vi − Vj ∀j 6= i | εi).

Notice that this probability is a function of εi, the random variable upon which we
condition. Given εi, we can treat (εi + Vi − Vj) as a constant. For any j 6= i, call this
constant cj. In words, Pi(εi) is the joint probability that εj < cj for all j other than i,
conditional on εi. Since the errors are independent, it follows that

Pi(εi) = P(ε1 < c1, ε2 < c2, . . . , εi−1 < ci−1, εi+1 < ci+1, . . . , εJ < cJ | εi)

= P(ε1 < c1, ε2 < c2, . . . , εi−1 < ci−1, εi+1 < ci+1, . . . , εJ < cJ)

= P(ε1 < c1)P(ε2 < c2) · · ·P(εi−1 < ci−1)P(εi+1 < ci+1) · · ·P(εJ < cJ)

=
∏
j 6=i

P(εj < cj).

And since F is the CDF of εj while cj ≡ εi + Vi − Vj, we have shown that

Pi(εi) =
∏
j 6=i

F (εi + Vi − Vj). (4.4)

But Pi(εi) isn’t what we were after. To calculate the desired unconditional choice
probability Pi, we apply the law of total probability. Specifically, integrating the condi-
tional choice probability P (εi) over the marginal distribution of εi, we obtain

Pi =

∫ ∞

−∞
Pi(εi)f(εi) dεi =

∫ +∞

−∞

[∏
j 6=i

F (z + Vi − Vj)

]
f(z) dz (4.5)

where f denotes the probability density function of εi.
The rest of the proof is just algebra: we simplify (4.5) and show that it equals the
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expression from the statement of the theorem. Differentiating F ,

f(z) = F ′(z) = exp(−z) exp {− exp(−z)} .

Substituting this into the function inside the integral on the right-hand side of (4.5) gives[∏
j 6=i

F (z + Vi − Vj)

]
f(z) =

[∏
j 6=i

exp{− exp(Vj − Vi − z)}

]
exp(−z) exp {− exp(−z)} .

But since exp {− exp(−z)} = exp {− exp(Vi − Vi − z)}, we can pull this factor inside the
square brackets in the preceding equality, yielding[∏

j 6=i

F (z + Vi − Vj)

]
f(z) =

[
J∏

j=1

exp{− exp(Vj − Vi − z)}

]
exp(−z)

where the product is now taken over all j rather than j 6= i. Using the properties of
exponents, we can re-write this product as

J∏
j=1

exp{− exp(Vj − Vi − z)} = exp

{
J∑

j=1

− exp (Vj − Vi − z)

}

= exp

{
− exp(−z)

J∑
j=1

exp (Vj − Vi)

}
.

Putting the pieces together, we have shown that

Pi =

∫ ∞

−∞
exp

{
− exp(−z)

J∑
j=1

exp (Vj − Vi)

}
exp(−z) dz. (4.6)

Comparing (4.6) to (4.5), it may not be immediately apparent that we’ve made our
integration problem any simpler. Notice, however, that the sum

∑J
j=1 exp(Vj − Vi) does

not involve z. As far as this integral is concerned, it’s simply a constant. Call it K for
short. Using this shorthand, we obtain

Pi =

∫ ∞

−∞
exp {−K exp(−z)} exp(−z) dz.

Now things are starting to look more promising. To evaluate this integral we’ll use the
change of variables t = exp(−z). As z diverges to +∞, t converges to zero. And as
z diverges to −∞, t diverges to +∞. Accordingly, after the change of variables our
lower limit of integration will become ∞ while our upper limit will become 0. Since
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dt = − exp(−z) dz, it follows that

Pi =

∫ ∞

−∞
exp {−K exp(−z)} exp(−z) dz =

∫ 0

∞
− exp(−Kt) dt

=

∫ ∞

0

exp(−Kt) dt =
exp(−Kt)

−K

∣∣∣∣∞
0

where the third equality uses the fact that reversing the limits of integration is equivalent
to multiplying the integral by −1. Since K ≡

∑J
j=1 exp(Vj − Vi) is positive, we see that

Pi =
exp(−Kt)

−K

∣∣∣∣∞
0

= 0−
[
exp(0)

−K

]
=

1

K
.

Finally, substituting the definition of K and using the properties of exponents,

Pi =
1

K
=

1∑J
j=1 exp(Vj − Vi)

=
1∑J

j=1 exp(Vj) exp(−Vi)

=
1

exp(−Vi)
∑J

j=1 exp(Vj)
=

exp(Vi)∑J
j=1 exp(Vj)

.
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Chapter 5

Sample Selection Models

So far we have always assumed that (y1,x1), . . . , (yN ,xN) are a random sample from the
population of interest. What if they aren’t? A sample that is not representative of the
population we hope to study is called a selected sample, and methods to handle this
problem are typically called sample selection models.

5.1 Examples of Sample Selection

Graduate Admissions Admissions committees read applications to try to screen out
candidates who are unlikely to succeed in graduate school. But perhaps their judgement
is flawed. Maybe they give too much weight to letters of reference from famous economists
and not enough to undergraduate grades; or perhaps they’re biased in favor of applicants
who studied at their own alma mater. Suppose we wanted to improve admissions decisions
at Oxford. Let y be a person’s overall mark in the 1st year of the Economics MPhil, and
x be a vector representing the information in her application: undergraduate grades,
the strength of her letters of reference, etc. Ideally we’d like to know the predictive
relationship between x and y: E(y|x), but there’s a problem. While we observe x for
everyone who applies, we only observe y for candidates who enrolled at Oxford. To
improve our admissions decisions, we need to learn the relationship between x and y in
the population of all applicants but our data for y constitute a selected sample. Alice was
admitted to Oxford and decided to attend; Bob was not admitted; Chiara was admitted
but went to MIT instead. This means that we only observe y for Alice. Based on what
we know about them, Alice, Bob, and Chiara are likely very different. Regressing y on
x using data for people like Alice may tell us little or nothing about whether we should
admit people like Bob or Chiara.

Wage Offers Another classic example of sample selection comes from Gronau (1974).
Suppose we are interested in learning how wage offers wo vary with a person’s character-
istics x, e.g. age, experience, and education. Ideally we’d like to learn E(wo|x) for the
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whole population, but we can only observe wage offers for people who were both offered
a job and accepted it, i.e. those who are currently employed. For reasons similar to those
described in the admissions example, it’s very likely that E(wo|x) most likely does not
equal E(wo|x,Employed).

5.2 The Heckman Selection Model

The classic econometric model for sample selection is the so-called Heckman Selection
Model. This model allows both selection on observables and unobservables. In other
words, it allows people who attend Oxford to differ from those who do not attend both
in ways that we can observe from their application files and in ways that we cannot.
To accomplish this impressive feat, we rely on fairly strong parametric assumptions.
These assumptions can be weakened to a certain extent, but not as much as we might
like. Selection on unobservables is fundamentally a very hard nut to crack! Our first
assumption gives the basic structure of the selection model we work with below. The
notation 1{A} represents the indicator of the event A: the function that equals one if
A occurs and zero otherwise.

Assumption 5.1 (Sample Selection Model). Suppose that

y1 = x′
1β1 + u1 (5.1)

y2 = 1 {x′δ2 + v2 > 0} (5.2)

where y2 and x′ ≡ (x′
1,x

′
2) are always observed but y1 is only observed when y2 = 1.

We call (5.1) the outcome equation and (5.2) the participation equation. The
outcome y1 is only observed for people who participate: y2 = 1. Our goal is to learn the
parameter β1 that relates x1 to y1 despite only observing y1 for a selected sample. In the
admissions example, exam results are only available for students who complete the first
year. The vector x contains all the information that we can observe about candidates
when they apply to the MPhil. The first component, x1, contains the covariates that
enter both the participation and outcome equations, while the second component, x2

contains the covariates that only enter the participation equation. It’s possible that x2 is
empty: in this case all of the covariates enter both equations. When x2 is not empty, we
say that there is an exclusion restriction: there is at least one covariate that matters
for participation but not for outcomes, effectively an instrumental variable. As we will
discuss further below, exclusion restrictions aren’t strictly required to apply the Heckman
selection model, but if available they are extremely helpful.

Assumption 5.1 assumes that both the participation and outcome equations are lin-
ear in parameters and depend on observed covariates x but says mothing about the
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unobservable error terms (u1, v2). Selection on observables enters the model through x1:
application files of people who attend Oxford are different from those of people who do not
attend in ways that matter for first-year MPhil grades. In other words, the observables
x1 enters both the selection and outcome equations. To allow selection on unobservables,
we need to allow an unobserved variable to enter both equations. This is equivalent to
allowing (u1, v2) to be statistically dependent, in that knowing something about v2, which
affects participation, tells us something about u1, which affects outcomes. The remaining
assumptions of the Heckman Selection Model concern the unobserved errors.

Assumption 5.2 (Exogeneity). (u1, v2) are mean zero and jointly independent of x.

The first part of Assumption 5.2 is not restrictive. It merely requires that E(u1) and
E(v2) are both zero. This is satisfied automatically if we include a constant in both the
participation and outcome equations, i.e. if the first element of x1 is 1. In contrast, the
second part of Assumption 5.2 is somewhat stronger than the usual exogeneity assumption
that we make in a regression model. Notice that the participation equation (5.2) is a
binary outcome model, just like the ones we examined in chapter 3 above. The Heckman
Selection Model assumes that it is a probit model.

Assumption 5.3 (Probit Participation Model). v2 ∼ Normal(0, 1)

The final assumption concerns the dependence between the unobservable in the out-
come equation, u1, and the unobservable in the participation equation, v2.

Assumption 5.4. E(u1|v2) = γ1v2 where γ1 is an unknown constant.

Assumption 5.4 maintains that the conditional mean function of u1 given v2 is linear.
As will be further clarified in our derivations below, the unknown slope parameter γ1

controls the nature and extent of sample selection bias. If γ1 is positive then, among
candidates with equally strong applications, those who choose to attend Oxford tend to
perform better on exams than those who do not choose to attend. The larger the value of
γ1, the stronger the effect. Assumption 5.4 can be relaxed to allow for more general forms
of dependence between u1 and v2. In fact you will consider just such an extension in your
problem set! Depending on which references you consult, you may see Assumptions 5.3
and 5.4 replaced by the assumption that (u1, v2) are jointly normally distributed. This
joint normality assumption implies the assumptions we use here, but is strictly stronger:
we do not require u1 to be normally distributed.

5.3 Two Key Lemmas

Under Assumptions 5.1–5.4, β1 is identified from a pair of straightforward regressions
using data for the selected sample only, as we will show below. Rather than jumping
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straight to the answer, we’ll take things in steps, beginning with a lemma that reveals
the anatomy of the selection problem.

Lemma 5.1. Under Assumptions 5.1, 5.2, and 5.4,

E (y1|x, y2 = 1) = x′
1β1 + γ1E(v2|x, y2 = 1)

We’ll show why Lemma 5.1 follows from our assumptions shortly. But before doing so,
we’ll answer a more important question: what does it mean? Both β1 and γ1 are constants
while x′ = (x′

1,x
′
2) is a vector of observables. Now, E(v2|x, y2 = 1) is a function of x,

call it h(x), that maps the regressor vector x to a scalar. If h(·) were known, we could
simply define w ≡ h(x) and treat this as an additional regressor, yielding

E(y1|x, y2 = 1) = E (y1|x1, w, y2 = 1) = x′
1β1 + γ1w (5.3)

since E(y1|x, y2) only depends on x through x1 and w ≡ h(x), as shown in Lemma 5.1.
Equation 5.3 has two important consequences. First, it shows that regressing y1 on
(x1, w) for the subset of individuals with y2 = 1 would suffice to identify both β1 and
γ1. This consequence is so significant that it bears repeating: regressing y1 on x1 and
w using data for the selected population allows us to identify the parameter β1 that
governs the relationship between y and x1 in the whole population. In other words, we
can learn the effect of education on wage offers in the population as a whole despite
observing wages for people who are employed only. To do this, we need only find a way
to calculate the “additional regressor” w ≡ h(x) ≡ E(v2|x, y2 = 1). Second, (5.3) shows
that any bias arising from sample selection comes from dependence between the errors
in the participation and outcome equations. If γ1 = 0, so that E(u1|v2) = E(u1) = 0,
there is no sample selection bias. In this case E(y1|x, y2 = 1) = x′

1β so regressing y1 on
x1 for the subset of individuals with y2 = 1 identifies β1. Now that we understand the
significance of Lemma 5.1, we’re ready to delve into the proof.

Proof of Lemma 5.1. This proof proceeds in three steps. In step one we show that u1

and x are conditionally independent given v2. In words: conditioning on (v2,x) gives the
same information about u1 as conditioning on v2 only. In step two, we use the result of
step one to show that E(y1|x, v2) = x′

1β1 + γ1v2. In step three we combine the results of
steps one and two to complete the proof.

For step one we use Assumption 5.2, which states that (u1, v2) are jointly independent
of x. Let f1,2|x be the conditional density of (u1, v2) given x and f1,2 be the unconditional
density of (u1, v2). By independence, f1,2|x = f1,2. Similarly, let f1|x, f2|x be the densities
of u1|x and v2|x and f1, f2 be the corresponding unconditional densities. Since joint
independence implies marginal independence, f1|x = f1 and f2|x = f2. Now let f1|2,x be
the conditional density of u1 given (v2,x). By the definition of a conditional density and
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the independence results we have just discussed,

f1|2,x(u1|v2,x) =
f1,2|x(u1, v2|x)
f2|x(v2|x)

=
f1,2(u1, v2)

f2(v2)
= f1|2(u1|v2).

Since f1|2,x does not depend on x, u1 is conditionally independent of x given v2.
For step two, we begin by substituting the outcome equation, (5.1), for y1 to yield

E(y1|x, v2) = E(x′
1β1 + u1|x, v2) = x′

1β1 +E(u1|x, v2)

using the fact that x1 is a subset of x and hence is “known” conditional on x. Now, by
step one E(u1|x, v2) = E(u1|v2) and by Assumption 5.4 E(u1|v2) = γ1v2. It follows that
E(y1|x, v2) = x′

1β1 + γ1v2, completing step 2.
Now we have all the ingredients needed to prove the lemma. By iterated expectations,

E(y1|x, y2) = Ev2|(x,y2) [E (y1|x, y2, v2)] . (5.4)

Now, by the participation equation, (5.2), y2 is a deterministic function of (x, v2). It
follows that conditioning on y2 after we have already conditioned on (x, v2) is redundant.
Hence, using the result of step two, we can write the inner expectation from (5.4) as

E(y1|x, y2, v2) = E(y1|x, v2) = x′
1β1 + γ1v2. (5.5)

Finally, substituting (5.5) into (5.4), we obtain

E(y1|x, y2) = E [x′
1β1 + γ1v2|x, y2] = x′

1β1 + γ1E(v2|x, y2)

since x1 is a subset of x and γ1 is a constant. The preceding equality holds for any value
of y2. Setting y2 = 1 gives the desired result.

So far we have only used Assumptions 5.1–5.2 and 5.4. As explained in the discussion
above, all that remains is for us to determine the function h(x) ≡ E(v2|x|y2 = 1). This
is where Assumption 5.3 finally makes its appearance. Under the assumption that v2 is
a standard normal random variable, this function takes a simple form: it equals the ratio
of the standard normal density and CDF, each evaluated at x′δ2.

Lemma 5.2. Under Assumptions 5.1–5.3,

E(v2|x, y2 = 1) =
ϕ(x′δ2)

Φ(x′δ2)

where ϕ(·) and Φ(·) denote the standard normal probability density function and CDF.

The function λ(c) ≡ ϕ(c)/Φ(c) that features in Lemma 5.2 is called the inverse Mills
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Ratio.1 The lemma shows that E(v2|x, y2 = 1) = λ(x′δ2). Thus, if we can identify
the parameter δ from the participation equation, we will have completely pinned down
E(v2|x, y2 = 1), solving the sample selection problem. The proof of Lemma 5.2 relies
on a fact concerning truncated normal distributions. In particular, if z ∼ N(0, 1) then
E(z|z > c) = ϕ(c)/[1− Φ(c)] for any constant c. A proof of this appears in section 5.5.

Proof of Lemma 5.2. Let x be a realization of the random vector x. Conditional on
{x = x}, by (5.2) the event {y2 = 1} is equivalent to {v2 > −x′δ2} and thus

P(v2 ≤ t|x = x, y2 = 1) = P(v2 ≤ t|x = x, v2 > −x′δ2).

Applying the definition of conditional probability to the right hand side gives

P(v2 ≤ t|x = x, y2 = 1) =
P ({v2 ≤ t} ∩ {v2 > −x′δ2} |x = x)

P(v2 > −x′δ2|x = x)
.

Like t, the product −x′δ2 is simply a constant. Call it c for short. Using this shorthand,
the numerator of the preceding equality is P({v2 ≤ t} ∩ {v2 > c} |x = x) while the de-
nominator is P(v2 > c|x = x). Each of these is simply the probability of v2 falling in a
particular interval given that x = x. By Assumption 5.2, however, v2 and x are inde-
pendent. It follows that these conditional probabilities given x equal the corresponding
unconditional probabilities, and thus

P(v2 ≤ t|x = x, y2 = 1) =
P ({v2 ≤ t} ∩ {v2 > c})

P(v2 > c)
= P(v2 ≤ t|v2 > c)

again using the definition of conditional probability. Thus, we have shown that the
distribution of v2 given {x = x, y2 = 1} coincides with the distribution of v2 given {v2 >
c}, again using the shorthand c ≡ −x′δ2. Thus, to complete the proof we simply need
to calculate E(v2|v2 > c). By Assumption 5.3, v2 ∼ N(0, 1) so we require the conditional
expectation of a standard normal random variable given that it has exceeded a specified
threshold c. Applying Lemma 5.3 from the appendix to this chapter,

E(v2|x = x, y2 = 1) = E(v2|v2 > c) =
ϕ(c)

1− Φ(c)
.

Because the standard normal density function ϕ is symmetric about zero, ϕ(c) = ϕ(−c).
For the same reason, 1− Φ(c) = Φ(−c). Therefore,

E(v2|x = x, y2 = 1) =
ϕ(c)

1− Φ(c)
=

ϕ(−c)

Φ(−c)
=

ϕ(x′δ2)

Φ(x′δ2)
.

1I use the notation λ(·) for the inverse Mills Ratio because it is standard. Note that this is not the
same thing as the function λ(·) from chapter 3!
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5.4 The Heckman Two-step Estimator

The preceding section contained a large number of details, so before proceeding let’s take
stock of what we’ve learned. Lemma 5.1 established that

E (y1|x, y2 = 1) = x′
1β1 + γ1E(v2|x, y2 = 1)

while Lemma 5.2 showed that

E(v2|x, y2 = 1) = λ(x′δ2), λ(c) ≡ ϕ(c)

Φ(c)
.

Substituting the second expression into the first, we see that

E(y1|x, y2 = 1) = x′
1β1 + γ1λ(x

′δ2), λ(c) ≡ ϕ(c)

Φ(c)
(5.6)

Given a random sample of N observations (y2i,xi) in which we only observe yi1 if y2i = 1,
Equation 5.6 immediately suggests a simple estimation procedure, commonly called the
Heckman two-step estimator, or heckit:

Step 1 Estimate λ(x′δ2).

• Run the probit regression P(y2i = 1|xi) = Φ(x′
iδ2) using the full sample of

observations for y2i and xi.

• Set λ̂i ≡ λ(x′
iδ̂2) where δ̂2 is the probit estimate for δ2.

Step 2 Estimate (β1, γ1).

• Run an OLS regression of yi1 on (x1i, λ̂i) using the selected sample of obser-
vations for which yi1 is observed.

• Report the second-step OLS estimates (β̂1, γ̂1).

While we will not go into the details here, it can be shown that the Heckman two-step
estimator is consistent and asymptotically normal, in particular δ̂2

β̂1

γ̂1

→p

 δ2

β1

γ1

 and
√
N

 δ̂2 − δ2

β̂1 − β1

γ̂1 − γ1

→d Normal(0,Ω) as N → ∞.

Calculating the asymptotic covariance matrix Ω is somewhat involved. Because the
second-step OLS regression does not take into account the fact that λ̂i is a generated
regressor, i.e. that it is estimated from the first-step probit, the usual regression standard
errors are incorrect. To ensure that you obtain the correct standard errors, it’s preferable
to use a packaged heckit routine rather than “rolling your own.”
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Figure 5.1: While the inverse Mills ratio λ(c) ≡ ϕ(c)/Φ(c) is a nonlinear function, it is
approximately linear over parts of its domain.

So what is the big picture here? How exactly does heckit solve the selection bias
problem? If we regress y1i on x1i for the selected sample, there is an omitted variable.
Under the Heckit assumptions, we showed that this omitted variable is precisely λ(x′

iδ2).
Hence, a regression of y1i on x1i and λ(x′

iδ2) for the selected sample is correctly specified,
and recovers our parameters of interest. If you have been paying close attention, however,
you may have noticed something strange: the regression equation in (5.6) includes x1 in
two places. It appears first as x′

1β1 and again as a constituent of x′ ≡ (x′
1,x

′
2) in λ(x′δ2).

Indeed, as mentioned above, we can allow x2 to be completely empty, in which case we
say that there is no exclusion restriction. Consider the simplest possible case, where
x1 = (1, x) and x2 is empty so that

E(y1|x, y2 = 1) = β0 + β1x+ γ1w, w ≡ λ(δ0 + δ1x).

If λ(·) were a linear function, then the regressors x and w would be perfectly linearly
dependent and γ1 and β1 would not be separately identified. Because λ is in fact a
nonlinear function, w and x will not be perfectly linearly dependent. Thus, in the case
without exclusion restrictions, identification in the Heckman selection model comes solely
from the nonlinearity of λ. Depending on the values at which λ is evaluated, however,
λ can be close to linear, as seen from Figure 5.1. This can lead to extremely imprecise
estimates when no exclusion restriction is available. If we do have an exclusion restriction,
i.e. a variable x2 that enters the participation equation but not the outcome equation,
then

E(y1|x, y2 = 1) = β0 + β1x+ γ1w, w ≡ λ(δ0 + δ1x1 + δ2x2).
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In this case, identification no longer comes solely from the nonlinearity of λ. Even if λ
were a linear function, this regression would still be identified as long as x2 and x1 are
not perfectly correlated: x2 induces variation in w that is unrelated to x1. As a rule,
the Heckman two-step estimator tends to perform better in settings where an exclusion
restriction is available. This of course raises the important question: where does an exclu-
sion restriction come from? Unfortunately there is no general answer to this question. In
effect, an exclusion restriction is like an instrumental variable. The question of whether a
particular regressor is excluded from the outcome equation can only be evaluated in the
context of a particular applied example.

5.5 Appendix: The Mean of a Truncated Normal

Lemma 5.3. Suppose that z ∼ N(0, 1) and let ϕ and Φ be the standard normal density
and CDF, respectively. Then for any constant c,

E(z|z > c) =
ϕ(c)

1− Φ(c)
.

Proof of Lemma 5.3. We first calculate the conditional CDF F of z given that z > c.
By the definition of conditional probability,

P(z ≤ t|z > c) =
P ({z ≤ t} ∩ {z > c})

P(z > c)
=

{
0, t ≤ c

P(c < z ≤ t)/P(z > c), t > c.

Now, since z is standard normal,

P(z > c) = 1−P(z ≤ c) = 1− Φ(c)

P(c < z ≤ t) = P(z ≤ t)−P(z ≤ c) = Φ(t)− Φ(c)

and hence
F (t) ≡ P(z ≤ t|z > c) = 1 {c < t}

[
Φ(t)− Φ(c)

1− Φ(c)

]
To find the corresponding conditional density of z given z > c, we differentiate the
conditional CDF, yielding

f(t) ≡ d

dt
F (t) = 1 {c < t} ϕ(t)

1− Φ(c)
.
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The desired conditional expectation is E(z|z > c) ≡
∫∞
−∞ tf(t) dt. Integrating,∫ ∞

−∞
tf(t) dt =

∫ ∞

c

tϕ(t)

1− Φ(c)
dt =

[
1

1− Φ(c)

](
1√
2π

)∫ ∞

c

t exp

{
−t2

2

}
dt

=

[
1

1− Φ(c)

](
1√
2π

)[
− exp

{
−t2

2

}]∞
c

=

[
1

1− Φ(c)

](
exp {−c2/2}√

2π

)
=

ϕ(c)

1− Φ(c)
.
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Appendix A

Errata

Errors in equations, proofs etc. from earlier versions of these notes are listed below along
with the date and time when they were corrected. Minor non-mathematical typos from
previous versions, e.g. duplicated words words or spelling misteaks, are not listed here.
The errors are printed in red and the corrections in blue.

Tue 22 Feb 14:51:45 GMT 2022

• At the bottom of the first paragraph on page 29, “arbitrarily setting equal to
G−1(0)” has been corrected to “arbitrarily setting equal to zero.”

• In the second sentence of the second paragraph of section 3.7 (page 36), “evaluated
at its MLE, G−1(β̂)” has been corrected to “evaluated at its MLE, β̂.”
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